A Computational Look at Oral History Archives

2022 ◽  
Vol 15 (1) ◽  
pp. 1-16
Author(s):  
Francisca Pessanha ◽  
Almila Akdag Salah

Computational technologies have revolutionized the archival sciences field, prompting new approaches to process the extensive data in these collections. Automatic speech recognition and natural language processing create unique possibilities for analysis of oral history (OH) interviews, where otherwise the transcription and analysis of the full recording would be too time consuming. However, many oral historians note the loss of aural information when converting the speech into text, pointing out the relevance of subjective cues for a full understanding of the interviewee narrative. In this article, we explore various computational technologies for social signal processing and their potential application space in OH archives, as well as neighboring domains where qualitative studies is a frequently used method. We also highlight the latest developments in key technologies for multimedia archiving practices such as natural language processing and automatic speech recognition. We discuss the analysis of both visual (body language and facial expressions), and non-visual cues (paralinguistics, breathing, and heart rate), stating the specific challenges introduced by the characteristics of OH collections. We argue that applying social signal processing to OH archives will have a wider influence than solely OH practices, bringing benefits for various fields from humanities to computer sciences, as well as to archival sciences. Looking at human emotions and somatic reactions on extensive interview collections would give scholars from multiple fields the opportunity to focus on feelings, mood, culture, and subjective experiences expressed in these interviews on a larger scale.

Author(s):  
Gregor Donaj ◽  
Mirjam Sepesy Maučec

This article presents the challenges of natural language processing applications when they are used with inflectional languages. Two typical applications are presented: automatic speech recognition and machine translation. An overview of those applications and the properties of inflectional languages is given as well as examples from the highly inflectional Slovene language. Then, an error classification with examples is given, also with an emphasis on inflectional languages, as well as some directions for further research in this area.


Author(s):  
Oksana Chulanova

The article discusses the capabilities of artificial intelligence technologies - technologies based on the use of artificial intelligence, including natural language processing, intellectual decision support, computer vision, speech recognition and synthesis, and promising methods of artificial intelligence. The results of the author's study and the analysis of artificial intelligence technologies and their capabilities for optimizing work with staff are presented. A study conducted by the author allowed us to develop an author's concept of integrating artificial intelligence technologies into work with personnel in the digital paradigm.


2013 ◽  
Vol 846-847 ◽  
pp. 1239-1242
Author(s):  
Yang Yang ◽  
Hui Zhang ◽  
Yong Qi Wang

This paper presents our recent work towards the development of a voice calculator based on speech error correction and natural language processing. The calculator enhances the accuracy of speech recognition by classifying and summarizing recognition errors on numerical calculation speech recognition area, then constructing Pinyin-text-mapping library and replacement rules, and combing priority correction mechanism and memory correction mechanism of Pinyin-text-mapping. For the expression after correctly recognizing, the calculator uses recursive-descent parsing algorithm and synthesized attribute computing algorithm to calculate the final result and output the result using TTS engine. The implementation of this voice calculator makes a calculator more humane and intelligent.


2021 ◽  
Author(s):  
García-Robledo Gabriela A ◽  
Reyes-Ortiz José A ◽  
González-Beltrán Beatriz A ◽  
Bravo Maricela

The development of question answering (QA) systems involves methods and techniques from the areas of Information Extraction (EI), Natural Language Processing (NLP), and sometimes speech recognition. A user interface that involves all these tasks requires deep development to improve the interaction between a user and a device. This paper describes a Spanish QA system for an academic domain through a multi-platform user interface. The system uses a voice query to be transformed into text. The semi-structured query is converted into SQWRL language to extract a system of ontologies from an academic domain using patterns. The answer of the ontologies is placed in templates classified according to the type of question. Finally, the answer is transformed into a voice. A method for experimentation is presented focusing on the questions asked in voice and their respective answers by experts from the academic domain in a set of 258 questions, obtaining a 92% accuracy.


Sign in / Sign up

Export Citation Format

Share Document