Flexible Motion Optimization with Modulated Assistive Forces

Author(s):  
Nam Hee Kim ◽  
Hung Yu Ling ◽  
Zhaoming Xie ◽  
Michiel van de Panne

Animated motions should be simple to direct while also being plausible. We present a flexible keyframe-based character animation system that generates plausible simulated motions for both physically-feasible and physically-infeasible motion specifications. We introduce a novel control parameterization, optimizing over internal actions, external assistive-force modulation, and keyframe timing. Our method allows for emergent behaviors between keyframes, does not require advance knowledge of contacts or exact motion timing, supports the creation of physically impossible motions, and allows for near-interactive motion creation. The use of a shooting method allows for the use of any black-box simulator. We present results for a variety of 2D and 3D characters and motions, using sparse and dense keyframes. We compare our control parameterization scheme against other possible approaches for incorporating external assistive forces.

Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


2021 ◽  
Author(s):  
Ruoyang Liu ◽  
Ke Tian Tan ◽  
Yifan Gong ◽  
Yongzhi Chen ◽  
Zhuoer Li ◽  
...  

Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended 2D and 3D polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores.


2005 ◽  
Vol 38 (7) ◽  
pp. 49
Author(s):  
DEEANNA FRANKLIN
Keyword(s):  

2005 ◽  
Vol 38 (9) ◽  
pp. 31
Author(s):  
BETSY BATES
Keyword(s):  

2007 ◽  
Vol 40 (23) ◽  
pp. 7
Author(s):  
ELIZABETH MECHCATIE
Keyword(s):  

2008 ◽  
Vol 41 (8) ◽  
pp. 4
Author(s):  
BROOKE MCMANUS
Keyword(s):  

VASA ◽  
2017 ◽  
Vol 46 (6) ◽  
pp. 431-439 ◽  
Author(s):  
Ana Gabriela Conceição-Vertamatti ◽  
Filipy Borghi ◽  
Fernando Canova ◽  
Dora Maria Grassi-Kassisse

Abstract. Hypertension is a silent and multifactorial disease. Over two centuries ago, the first device to record blood pressure was developed, making it possible to determine normotension and to establish criteria for hypertension. Since then, several studies have contributed to advance knowledge in this area, promoting significant advances in pharmacological treatments and, as a result, increasing survival of hypertensive people. The main models developed for the study of hypertension and the main findings in the vascular area are included in this review. We considered aspects related to vascular reactivity, changes in the population, and action of beta adrenergic receptors in the pathogenesis of hypertension.


Sign in / Sign up

Export Citation Format

Share Document