Design of Wavelet Filter in Analog Domain Using Quantum Genetic Algorithm

2021 ◽  
Author(s):  
Yuzhen Zhang ◽  
Wenshan Zhao
Proceedings ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 26
Author(s):  
Pranjal Sharma ◽  
Ankit Agarwal ◽  
Bhawna Chaudhary

In recent years, geologists have put in a lot of effort trying to study the evolution of Earth using different techniques studying rocks, gases, and water at different channels like mantle, lithosphere, and atmosphere. Some of the methods include estimation of heat flux between the atmosphere and sea ice, modeling global temperature changes, and groundwater monitoring networks. That being said, algorithms involving the study of Earth’s evolution have been a debated topic for decades. In addition, there is distinct research on the mantle, lithosphere, and atmosphere using isotopic fractionation, which this paper will take into consideration to form genes at the former stage. This factor of isotopic fractionation could be molded in QGA to study the Earth’s evolution. We combined these factors because the gases containing these isotopes move from mantle to lithosphere or atmosphere through gaps or volcanic eruptions contributing to it. We are likely to use the Rb/Sr and Sm/Nd ratios to study the evolution of these channels. This paper, in general, provides the idea of gathering some information about temperature changes by using isotopic ratios as chromosomes, in QGA the chromosomes depict the characteristic of a generation. Here these ratios depict the temperature characteristic and other steps of QGA would be molded to study these ratios in the form of temperature changes, which would further signify the evolution of Earth based on the study that temperature changes with the change in isotopic ratios. This paper will collect these distinct studies and embed them into an upgraded quantum genetic algorithm called Quantum Genetic Terrain Algorithm or Quantum GTA.


2013 ◽  
Vol 859 ◽  
pp. 577-581
Author(s):  
Hui Xia Li ◽  
Yun Can Xue ◽  
Jian Qiang Zhang ◽  
Qi Wen Yang

To overcome the shortcomings of precocity and being easily trapped into local optimum of the standard quantum genetic algorithm (QGA) , Information Technology in An Improved Quantum Genetic Algorithm based on dynamic adjustment of the quantum rotation angle of quantum gate (DAAQGA) was proposed. Mutation operation using the quantum not-gate is also introduced to enhance the diversity of population. Chaos search are also introduced into the modified algorithm to improve the search accuracy. Simulation experiments have been carried and the results show that the improved algorithm has excellent performance both in the preventing premature ability and in the search accuracy.


Sign in / Sign up

Export Citation Format

Share Document