A Semantic Data Lake Model for Analytic Query-Driven Discovery

2021 ◽  
Author(s):  
Claudia Diamantini ◽  
Domenico Potena ◽  
Emanuele Storti
Keyword(s):  
Robotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Camilla Follini ◽  
Valerio Magnago ◽  
Kilian Freitag ◽  
Michael Terzer ◽  
Carmen Marcher ◽  
...  

The application of robotics in construction is hindered by the site environment, which is unstructured and subject to change. At the same time, however, buildings and corresponding sites can be accurately described by Building Information Modeling (BIM). Such a model contains geometric and semantic data about the construction and operation phases of the building and it is already available at the design phase. We propose a method to leverage BIM for simple yet efficient deployment of robotic systems for construction and operation of buildings. With our proposed approach, BIM is used to provide the robot with a priori geometric and semantic information on the environment and to store information on the operation progress. We present two applications that verify the effectiveness of our proposed method. This system represents a step forward towards an easier application of robots in construction.


Author(s):  
Cassio Melo ◽  
Alexander Mikheev ◽  
Benedicte Le-Grand ◽  
Marie-Aude Aufaure

1978 ◽  
Vol 4 (2-3) ◽  
pp. 77-98 ◽  
Author(s):  
D.M. Imboden ◽  
R. Gächter

2021 ◽  
Author(s):  
Etienne Gaborit ◽  
Murray MacKay ◽  
Camille Garnaud ◽  
Vincent Fortin

<p>This study aims at assessing the impact of a new lake model on streamflow simulations performed with the GEM-Hydro hydrologic model developed at ECCC. GEM-Hydro is at the heart of the National Surface and River Prediction System (NSRPS) which ECCC uses to forecast river flows over most of Canada. The GEM-Hydro model mainly consists of the GEM-Surf component to represent surface processes, and of the Watroute model to represent river and lake routing, in order to perform streamflow simulations and forecasts. The surface component of GEM-Hydro can simulate 5 different types of surfaces.  Currently, the water tile consists of a very simple algorithm which, in terms of water balance, consists of producing runoff fluxes simply equal to precipitation minus evaporation. This runoff over water surfaces is then provided as input, along with runoff and drainage generated over other surface tiles, to the Watroute model. The Watroute version used in GEM-Hydro currently only represents major lakes (area greater than 100km<sup>2</sup>) along the river networks, and does not represent the impact that small lakes can have on streamflow, which mainly consists in slowing down runoff before it reaches the main streams of the network.</p><p>Recently, the Canadian Small Lake Model (CSLM) was implemented in the surface component of GEM-Hydro to represent the energy and water balance over water tiles more accurately. So far, CSLM simulations have been shown promising in terms of evaporation, ice cover, absolute and dew point temperature simulations, compared with the former algorithm used over water. However, the impact of CSLM on the resulting streamflow simulations performed with GEM-Hydro has not been evaluated yet. This study aims first at evaluating the impact of CSLM on streamflow simulations, and secondly at testing different CSLM configurations as well as different coupling strategies with Watroute, with the objective of finding the best set up for the prediction of streamflow in Canada. For example, overland runoff generated by the land tile can be provided to the water tile of the same grid point in different ways, and the outflow computed at the outlet of the water tile can be computed with different parameters. Moreover, different outflow computations have to be taken into account depending on if the water tile of a grid point represents subgrid-scale lakes, or if on the contrary it belongs to a lake spanning over multiple model grid points.</p><p>To do so, different GEM-Hydro open-loop simulations have been performed on the Lake of the Woods watershed, located in Canada, with and without CSLM to represent water tiles. The CSLM configurations leading to the best results are presented here. CSLM simulations are also evaluated in terms of surface fluxes, to ensure that the main purpose of the model, which is to improve surface fluxes to ultimately improve atmospheric forecasts, is preserved, compared to the default configuration of the model. Ideas for further improving the coupling between the GEM-Hydro surface and routing components, in terms of lake processes, are also presented and will be tested in future work.</p>


2021 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>The study of thermodynamic and biochemical processes of inland water objects using one- and three-dimensional RANS numerical models was carried out both for idealized water bodies and using measurements data. The need to take into account seiche oscillations to correctly reproduce the deepening of the upper mixed layer in one-dimensional (vertical) models is demonstrated. We considered the one-dimensional LAKE model [1] and the three-dimensional model [2, 3, 4] developed at the Research Computing Center of Moscow State University on the basis of a hydrodynamic code combining DNS/LES/RANS approaches for calculating geophysical turbulent flows. The three-dimensional model was supplemented by the equations for calculating biochemical substances by analogy with the one-dimensional biochemistry equations used in the LAKE model. The effect of mixing processes on the distribution of concentration of greenhouse gases, in particular, methane and oxygen, was studied.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (19-05-00249, 20-05-00776). </p><p>1. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Timo V. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9(5). P. 1977–2006.<br>2. Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. 34(2). P. 119-132.<br>3. Mortikov, E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108-115.<br>4. Gladskikh D.S., Stepanenko V.M., Mortikov E.V. On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer // Water Resourses. 2021.V. 45, 9 pages. (in press) </p>


Author(s):  
Scott G. Danielson

Abstract An engineering database modeling telephone outside plant networks is developed. Semantic and relational database design methodologies are used with the semantic data model developed based on an extended entity-relationship approach. This logical model is used to generate a normalized relational data structure. This database holds engineering data supporting engineering analyses, engineering work order generation procedures, and network planning activities. The database has been linked to separate network analysis programs and CAD-based network maps by a database application.


Sign in / Sign up

Export Citation Format

Share Document