On the numerical study of thermohydrodynamics and biochemistry of inland water bodies

Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>The study of thermodynamic and biochemical processes of inland water objects using one- and three-dimensional RANS numerical models was carried out both for idealized water bodies and using measurements data. The need to take into account seiche oscillations to correctly reproduce the deepening of the upper mixed layer in one-dimensional (vertical) models is demonstrated. We considered the one-dimensional LAKE model [1] and the three-dimensional model [2, 3, 4] developed at the Research Computing Center of Moscow State University on the basis of a hydrodynamic code combining DNS/LES/RANS approaches for calculating geophysical turbulent flows. The three-dimensional model was supplemented by the equations for calculating biochemical substances by analogy with the one-dimensional biochemistry equations used in the LAKE model. The effect of mixing processes on the distribution of concentration of greenhouse gases, in particular, methane and oxygen, was studied.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (19-05-00249, 20-05-00776). </p><p>1. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Timo V. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9(5). P. 1977–2006.<br>2. Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. 34(2). P. 119-132.<br>3. Mortikov, E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108-115.<br>4. Gladskikh D.S., Stepanenko V.M., Mortikov E.V. On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer // Water Resourses. 2021.V. 45, 9 pages. (in press) </p>

Author(s):  
D. Pulgarín ◽  
J. Plaza ◽  
J. Ruge ◽  
J. Rojas

This study proposes a methodology for the calibration of combined sewer overflow (CSO), incorporating the results of the three-dimensional ANSYS CFX model in the SWMM one-dimensional model. The procedure consists of constructing calibration curves in ANSYS CFX that relate the input flow to the CSO with the overflow, to then incorporate them into the SWMM model. The results obtained show that the behavior of the flow over the crest of the overflow weir varies in space and time. Therefore, the flow of entry to the CSO and the flow of excesses maintain a non-linear relationship, contrary to the results obtained in the one-dimensional model. However, the uncertainty associated with the idealization of flow methodologies in one dimension is reduced under the SWMM model with kinematic wave conditions and simulating CSO from curves obtained in ANSYS CFX. The result obtained facilitates the calibration of combined sewer networks for permanent or non-permanent flow conditions, by means of the construction of curves in a three-dimensional model, especially when the information collected in situ is limited.


2020 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>Currently, one-dimensional and three-dimensional models are widely used to model thermohydrodynamic and biochemical processes in lakes and water rеreservoirs. One-dimensional models are highly computationally efficient and are used to parameterize land water bodies in climate models, however, when calculating large lakes and reservoirs with complex geometry, such models may incorrectly reproduce processes associated with horizontal heterogeneity. This becomes especially important for the prediction of water quality and euthrophication.</p><p>A three-dimensional model of thermohydrodynamics and biochemistry of an inland water obect is presented, which is based on the hydrostatic RANS model [1-3], and the parameterization of biochemical processes is implemented by analogy with the scheme for calculating biochemistry in the one-dimensional LAKE model [4]. Thus, the three-dimensional model is supplemented by a description of the transport of substances such as oxygen (O<sub>2</sub>), carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), as well as phyto- and zooplankton. The effect of turbulent diffusion and large-scale water movements on the distribution of a methane concentration field is studied.</p><p>To verify the calculation results, idealized numerical experiments and comparison with the measurement data on Lake Kuivajärvi (Finland) were used.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (18-05-00292, 18-35-00602, 20-05-00776). <br><br>References:<br>[1] Mortikov E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. 52. P. 108-115.<br>[2] Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. V. 34, N 2. P. 119-132.<br>[3] D.S. Gladskikh, V.M. Stepanenko, E.V. Mortikov, On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer. // Water Resourses. 2019. 18 pages. (submitted)<br>[4] Victor Stepanenko, Ivan Mammarella, Anne Ojala, Heli Miettinen, Vasily Lykosov, and Vesala Timo. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geoscientific Model Development, 9(5): 1977–2006, 2016.</p>


Author(s):  
Qian Lin ◽  
Weizhong Zhang

The containment thermal hydraulics of a small reactor during loss of coolant accident (LOCA) is studied by a lumped parameter one-dimensional model and a three-dimensional model. The capability of a kind of heat exchanger type passive containment cooling system (PCCS) is analyzed by the one-dimensional model. The calculation results show that, the decay heat can be removed and the containment pressure can be decreased by the proposed PCCS. The steam and non-condensable gas (the air) distribution in the containment is investigated, the mixing and stratification behaviors are analyzed for several different cases, in which the PCCS and condenser are located at higher, base or lower position. The sensitivity analysis of the PCCS elevation shows that, in despite of the different gas stratification, the containment pressures are nearly the same. Similar conclusions can be obtained by the one-dimensional model and three-dimensional model. The preliminary results may indicate that, the designed PCCS and condenser can be located at a lower part, which will be benefit for the economy of the small reactor or meet other requirements.


2007 ◽  
Vol 2 (2) ◽  
Author(s):  
P. Staufer ◽  
J. Dettmar ◽  
J. Pinnekamp

Sewer cleaning with the means of flushing offers the possibility to place sewers free of deposit if flushing waves are generated continuously or quasi-continuously by suitable flushing devices. Numerical investigations should be carried out regarding different hydraulic circumstances because sewer networks consist of various compounds with complex geometries e.g. cross-section alignment or special structures. To accomplish a stable and successful operation of flushing devices it seems necessary to use different level of approximation on modelling flushing waves. Thereby both accuracy and running-time of simulations with numerical models will be optimized. This paper presents differences and similarities of the simulation results of a one-dimensional and a three-dimensional model of flushing wave within a big sized sewer. As assumed the one-dimensional model becomes less accurate when the complexity of the geometry increases. The three-dimensional model shows an underestimation of velocity and bottom shear-stress at the flushing head due to energy losses within the water body. Contrary, the one-dimensional model overestimates bottom shear-stress at the flushing head because of a stationary basic approach which is used. However, real highly resolved measurements of bottom shear-stresses are required to confirm the results in detail.


2012 ◽  
Vol 507 ◽  
pp. 137-141
Author(s):  
Zhi Qin Huang ◽  
Pei Ying Quan ◽  
Yong Qing Pan

With the rapid development of power type LED, the issue of the cooling of LED has been prominent. How to make the heat generated by LED chip go out quickly in order to cool the LED chip has become an urgent problem. The form of heat goes through the substrate has been widely used and has become the best way to solve the heat problem. There are three types of LED substrate. They are metal substrate, ceramic substrate and composite substrate. At first, In this paper I analyze the theoretical of three-dimensional non-steady state and steady state heat conduction equation, then the three-dimensional model is simplified as one-dimensional model and I get the results of heat conduction equation under the one-dimensional stationary and non-steady state.


Author(s):  
Yasha Klots

The article seeks to define tamizdat as a literary practice and political institution of the late Soviet era. Comprising manuscripts rejected, censored, or never submitted for publication at home but smuggled through various channels out of the country and printed elsewhere, with or without their authors’ knowledge or consent, tamizdat contributed to the formation of the twentieth-century Russian literary canon. Tamizdat thus mediated the relationships of authors in Russia with the Soviet literary establishment on the one hand and with the underground on the other, while the very prospect of having their works published abroad, let alone the consequences of such a transgression, affected these authors’ choices and ideological positions in regard to both fields. The article argues, along these lines, that tamizdat was as emblematic of the literary scene after Stalin as its more familiar and better researched domestic counterparts, samizdat and gosizdat, whereby the traditional notion of late Soviet culture as a binary opposition between the official and underground fields is reinvented, instead, as a transnationally dynamic three-dimensional model.


1997 ◽  
Vol 77 (2) ◽  
pp. 654-666 ◽  
Author(s):  
Douglas Tweed

Tweed, Douglas. Three-dimensional model of the human eye-head saccadic system. J. Neurophysiol. 77: 654–666, 1997. Current theories of eye-head gaze shifts deal only with one-dimensional motion, and do not touch on three-dimensional (3-D) issues such as curvature and Donders' laws. I show that recent 3-D data can be explained by a model based on ideas that are well established from one-dimensional studies, with just one new assumption: that the eye is driven toward a 3-D orientation in space that has been chosen so that Listing's law of the eye in head will hold when the eye-head movement is complete. As in previous, one-dimensional models, the eye and head are feedback-guided and the commands specifying desired eye position eye pass through a neural “saturation” so as to stay within the effective oculomotor range. The model correctly predicts the complex, 3-D trajectories of the head, eye in space, and eye in head in a variety of saccade tasks. And when it moves repeatedly to the same target, varying the contributions of eye and head, the model lands in different eye-in-space positions, but these positions differ only in their cyclotorsion about the line of sight, so they all point that line at the target—a behavior also seen in real eye-head saccades. Between movements the model obeys Listing's law of the eye in head and Donders' law of the head on torso, but during certain gaze shifts involving large torsional head movements, it shows marked, 8° deviations from Listing's law. These deviations are the most important untested predictions of the theory. Their experimental refutation would sink the model, whereas confirmation would strongly support its central claim that the eye moves toward a 3-D position in space chosen to obey Listing's law and, therefore, that a Listing operator exists upstream from the eye pulse generator.


2019 ◽  
Vol 31 (1) ◽  
pp. 100-116 ◽  
Author(s):  
Bingfei Liu ◽  
Qingfei Wang ◽  
Kai Yin ◽  
Liwen Wang

A theoretical model for the crack monitoring of the shape memory alloy intelligent concrete is presented in this work. The mechanical properties of shape memory alloy materials are first given by the experimental test. The one-dimensional constitutive model of the shape memory alloys is reviewed by degenerating from a three-dimensional model, and the behaviors of the shape memory alloys under different working conditions are then discussed. By combining the electrical resistivity model and the one-dimensional shape memory alloy constitutive model, the crack monitoring model of the shape memory alloy intelligent concrete is given, and the relationships between the crack width of the concrete and the electrical resistance variation of the shape memory alloy materials for different crack monitoring processes of shape memory alloy intelligent concrete are finally presented. The numerical results of the present model are compared with the published experimental data to verify the correctness of the model.


Author(s):  
Ali Y. Alharbi ◽  
Deborah V. Pence ◽  
Rebecca N. Cullion

Flow through fractal-like branching flow networks is investigated using a three-dimensional computational fluid dynamics approach. Results are used to assess the validity of, and provide insight for improving, assumptions imposed in a one-dimensional model previously developed. Assumptions in the one-dimensional model include (1) reinitiating boundary layers following each bifurcation, (2) negligible minor losses at the bifurcations, and (3) constant thermophysical fluid properties. It is concluded that the temperature dependence of fluid properties, boundary layer development, and minor losses following a bifurcation are not negligible in analyses of branching flow networks.


2013 ◽  
Vol 9 (S296) ◽  
pp. 330-331
Author(s):  
Toby Potter ◽  
Lister Staveley-Smith ◽  
John Kirk ◽  
Brian Reville ◽  
Geoff Bicknell ◽  
...  

AbstractSNR 1987A is the expanding remnant from the brightest supernova since the invention of the telescope. The remnant has been monitored extensively in the radio at variety of wavelengths and provides a wealth of data on which to base a simulation. Questions to be answered include estimating the efficiency of particle acceleration at shock fronts, determining the cause of the one-sided radio morphology for SNR 1987A and investigating the gas properties of the pre-supernova environment. We attempt to address these questions using a fully three-dimensional model of SNR 1987A.


Sign in / Sign up

Export Citation Format

Share Document