Abnormality detection and classification of macular diseases from optical coherence tomography images

2021 ◽  
Author(s):  
Ashok L R ◽  
Sreeni K G
2017 ◽  
Vol 11 (01) ◽  
pp. 59
Author(s):  
Burak Turgut ◽  

Spectral domain optical coherence tomography (SD-OCT) is a non-invasive imaging method which is used in the diagnosis and followup of various macular diseases. SD-OCT provides detailed imaging of the retina. However, it has also been used to evaluate the choroidal layers. There are many publications on the OCT terminology, the definition and classification of retinal and choroidal structures including lines, bands and zones described in OCT. The aim of this review is to provide an overview of the literature on the past and present terminology for the retinal and choroidal structures seen in SD-OCT. To know OCT terminology will provide to be understanding better the pathogenesis of these diseases and the effects of therapeutic applications for these.


2018 ◽  
Vol 97 (4) ◽  
pp. 364-371 ◽  
Author(s):  
Sarra Gattoussi ◽  
Gabriëlle H.S. Buitendijk ◽  
Tunde Peto ◽  
Irene Leung ◽  
Steffen Schmitz-Valckenberg ◽  
...  

2021 ◽  
Vol 137 ◽  
pp. 106861
Author(s):  
Deepa Joshi ◽  
Ankit Butola ◽  
Sheetal Raosaheb Kanade ◽  
Dilip K. Prasad ◽  
S.V. Amitha Mithra ◽  
...  

2021 ◽  
pp. 247412642199705
Author(s):  
Halward M.J. Blegen ◽  
Samuel D. Hobbs ◽  
Reggie Taylor ◽  
Andrew L. Plaster ◽  
Paul M. Drayna

Purpose: Optical coherence tomography (OCT) is useful in diagnosing and monitoring retinal pathology such as age-related macular degeneration, diabetic macular edema (DME), central serous chorioretinopathy, and epiretinal membrane, among others. This study compared the ability of horizontal (H) 25-, 13-, and 7-cut macular OCT vs 24-, 12-, and 6-cut radial (R) macular OCT in identifying various macular pathology. Methods: This was a prospective study of 161 established patients evaluated at Wilford Hall Eye Center Retina Clinic between September and October of 2019. Pathology included age-related macular degeneration, central serous chorioretinopathy, DME, and epiretinal membrane, among others. Patients obtained 25-, 13-, and 7-cut H raster OCT as well as 24-, 12-, and 6-cut R OCT. Primary outcomes were sensitivity in detecting macular fluid and each macular abnormality. Results: The 24-cut radial (R24) OCT equally or out-performed the H25 (horizontal 25-cut OCT) in detecting macular fluid across all pathological groups. Generally, a higher number of cuts correlated with better detection of fluid. In detecting any macular abnormalities, H25, R24, and R12 had 100% sensitivity. R6 OCT had near 100% sensitivity across all groups, except for DME (95%). Overall, R OCT had better sensitivity (0.960) than H OCT (0.907) in detecting macular pathology. Conclusions: R outperformed H macular OCT in detecting fluid and other abnormalities. Clinically, both scanning patterns can be used by ophthalmologists in diagnosis and management of commonly encountered macular diseases. Technicians may be able to use a variety of these scans to screen for pathology prior to physician evaluation.


2017 ◽  
Vol 35 ◽  
pp. 570-581 ◽  
Author(s):  
Sieun Lee ◽  
Nicolas Charon ◽  
Benjamin Charlier ◽  
Karteek Popuri ◽  
Evgeniy Lebed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document