Compliant motion in a simple polygon

Author(s):  
J. Friedman ◽  
J. Hershberger ◽  
J. Snoeyink
2002 ◽  
Vol 12 (04) ◽  
pp. 339-352 ◽  
Author(s):  
SANG-MIN PARK ◽  
JAE-HA LEE ◽  
KYUNG-YONG CHWA

We consider the problem of searching for mobile intruders in a polygonal region with one door by two guards. Given a simple polygon [Formula: see text] with a door d, which is called a room [Formula: see text], two guards start at d and walk along the boundary of [Formula: see text] to detect a mobile intruder with a laser beam between the two guards. During the walk, two guards are required to be mutually visible all the time and eventually meet at one point. We give a characterization of the class of rooms searchable by two guards and an O(n log n)-time algorithm to test if a given room admits a walk, where n is the number of the vertices in [Formula: see text].


2002 ◽  
Vol 12 (03) ◽  
pp. 249-261 ◽  
Author(s):  
XUEHOU TAN

Let π(a,b) denote the shortest path between two points a, b inside a simple polygon P, which totally lies in P. The geodesic distance between a and b in P is defined as the length of π(a,b), denoted by gd(a,b), in contrast with the Euclidean distance between a and b in the plane, denoted by d(a,b). Given two disjoint polygons P and Q in the plane, the bridge problem asks for a line segment (optimal bridge) that connects a point p on the boundary of P and a point q on the boundary of Q such that the sum of three distances gd(p′,p), d(p,q) and gd(q,q′), with any p′ ∈ P and any q′ ∈ Q, is minimized. We present an O(n log 3 n) time algorithm for finding an optimal bridge between two simple polygons. This significantly improves upon the previous O(n2) time bound. Our result is obtained by making substantial use of a hierarchical structure that consists of segment trees, range trees and persistent search trees, and a structure that supports dynamic ray shooting and shortest path queries as well.


1995 ◽  
Vol 05 (01n02) ◽  
pp. 93-124 ◽  
Author(s):  
DANNY Z. CHEN

The problem of detecting the weak visibility of an n-vertex simple polygon P is that of finding whether P is weakly visible from one of its edges and (if it is) identifying every edge from which P is weakly visible. In this paper, we present an optimal parallel algorithm for solving this problem. Our algorithm runs in O(log n) time using O(n/log n) processors in the CREW PRAM computational model, and is very different from the sequential algorithms for this problem. Based on this algorithm, several other problems related to weak visibility can be optimally solved in parallel.


1999 ◽  
Vol 09 (06) ◽  
pp. 533-552 ◽  
Author(s):  
EVANTHIA PAPADOPOULOU

This paper presents a simple O(n+k) time algorithm to compute the set of knon-crossing shortest paths between k source-destination pairs of points on the boundary of a simple polygon of n vertices. Paths are allowed to overlap but are not allowed to cross in the plane. A byproduct of this result is an O(n) time algorithm to compute a balanced geodesic triangulation which is easy to implement. The algorithm extends to a simple polygon with one hole where source-destination pairs may appear on both the inner and outer boundary of the polygon. In the latter case, the goal is to compute a collection of non-crossing paths of minimum total cost. The case of a rectangular polygonal domain where source-destination pairs appear on the outer and one inner boundary12 is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document