scholarly journals Guidelines for selecting and using simulation model verification techniques

Author(s):  
R. B. Whitner ◽  
O. Balci
2005 ◽  
Vol 52 (5) ◽  
pp. 257-264 ◽  
Author(s):  
T.G. Schmitt ◽  
M. Thomas ◽  
N. Ettrich

The European research project in the EUREKA framework, RisUrSim is presented with its overall objective to develop an integrated planning tool to allow cost effective management for urban drainage systems. The project consortium consisted of industrial mathematics and water engineering research institutes, municipal drainage works as well as an insurance company. The paper relates to the regulatory background of European Standard EN 752 and the need of a more detailed methodology to simulate urban flooding. The analysis of urban flooding caused by surcharged sewers in urban drainage systems leads to the necessity of a dual drainage modeling. A detailed dual drainage simulation model is described based upon hydraulic flow routing procedures for surface flow and pipe flow. Special consideration is given to the interaction between surface and sewer flow during surcharge conditions in order to most accurately compute water levels above ground as a basis for further assessments of possible damage costs. The model application is presented for a small case study in terms of data needs, model verification and first simulation results.


Author(s):  
Hossein Hafezi ◽  
Hannu Laaksonen ◽  
Kimmo Kauhaniemi ◽  
Panu Lauttamus ◽  
Stefan Strandberg

2020 ◽  
Vol 11 (4) ◽  
pp. 591-603
Author(s):  
Fauziana Lamin ◽  
Ahmad Kamal Ariffin Mohd Ihsan ◽  
Intan Fadhlina Mohamed ◽  
Cheeranan Krutsuwan Nuphairode

PurposeThis paper aims to evaluate the validity of bilinear hardening model to represent the stress flow of high-pressure torsion (HPT)-strengthened lightweight material, AA2024.Design/methodology/approachFinite-element HPT simulation was performed by applying a simultaneous prescribed displacement on the axial and rotational axis that is equivalent to 4 GPa pressure and 30° torsion. The material behaviour incorporates plasticity attributes with a bilinear constitutive equation that consists of elastic and tangent modulus.FindingsAs a result, the von Mises stress generated from the simulation is in good agreement with the experiment, indicating that the assumptions of plasticity properties applied for the FEM simulation model are acceptable. The model verification confirms the anticipated plasticity parameters’ effect on the generated von Mises stress. The disc centre also evidenced an insignificant stress increment due to the limited shear straining.Research limitations/implicationsA reliable hardening model would assist in understanding the stress flow associated with mechanical properties enhancement.Practical implicationsThe bilinear hardening model exhibits a satisfactory stress estimation. It simplifies the ideal strain variable hardening procedures and lessens the total computation time that is valuable in solving severe plastic deformation problems.Originality/valueAn integration of well-defined input parameters, concerning the hardening behaviour and the plasticity properties, contributes to the establishment of a validated HPT simulation model, particularly for AA2024. This study also proved that perfectly plastic behaviour is inappropriate to represent hardening in the HPT-strengthened materials due to the remarkable stress deviation from the experimental data.


Author(s):  
Xiaolei NING ◽  
Xin ZHAO ◽  
Yingxia WU ◽  
Junmin ZHAO ◽  
Meibo LYU ◽  
...  

The most basic and direct method for simulation model validation is to compare the consistency of missile flight data and simulation data under the same input conditions. However, the existing dynamic data consistency analysis methods are mainly suitable for the case between 1-D missile flight data and 1-D simulation data, and do not conform to the consistency test of single sample flight data and multi-sample simulation data in equipment qualification/finalization test. To solve this problem, a simulation model validation method based on probabilistic relational analysis is proposed. The consistency of output data is measured from the two scales of probability relational coefficient and probability relational degree. The probability relational coefficient is determined by calculating the cumulative distribution probability value of real missile flight samples in the distribution function constructed by simulation data. The probability correlation degree is calculated by judging whether the probability relational coefficient satisfies the uniform distribution of[0 1]. The consistency analysis problem of a kind of dynamic data association is solved accordingly. The correlation theorem that the probability relational degree must satisfy and its property are proved. Meanwhile the operation steps of simulation model verification based on probability correlation analysis are given. This method can process all multi-dimensional simulation data at the same time, and integrate the random factors in the test process, so it can make full use of the test information under the condition of small sample flight test, and improve precision and the reliability of simulation model verification. The rationality and validity of this method are further verified by numerical tests and application examples.


Transportation simulation model development allows simulating traveller’s decisions, evaluating various transportation management strategies and complex solutions. The aim of the paper is to set the general principles of the transportation simulation model development and validation. The paper contains the overview of the transportation simulation models types with the examples from the conducted projects for the Riga city. The basic steps of the simulation model development procedure: initial data preparation and analysis, transportation model development and simulation, scenarios planning and evaluation, and simulation models outcomes evaluation are considered. Simulation model verification, validation and calibration definitions are given. The basic checks for the transportation macroscopic and microscopic simulation model validation are listed. A summary of the transportation simulation model validation and calibration methods and parameters is given.


Sign in / Sign up

Export Citation Format

Share Document