scholarly journals Chiral Effective Field Theory and the High-Density Nuclear Equation of State

Author(s):  
C. Drischler ◽  
J.W. Holt ◽  
C. Wellenhofer

Born in the aftermath of core-collapse supernovae, neutron stars contain matter under extraordinary conditions of density and temperature that are difficult to reproduce in the laboratory. In recent years, neutron star observations have begun to yield novel insights into the nature of strongly interacting matter in the high-density regime where current theoretical models are challenged. At the same time, chiral effective field theory has developed into a powerful framework to study nuclear matter properties with quantified uncertainties in the moderate-density regime for modeling neutron stars. In this article, we review recent developments in chiral effective field theory and focus on many-body perturbation theory as a computationally efficient tool for calculating the properties of hot and dense nuclear matter. We also demonstrate how effective field theory enables statistically meaningful comparisons among nuclear theory predictions, nuclear experiments, and observational constraints on the nuclear equation of state. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2016 ◽  
Vol 52 (1) ◽  
Author(s):  
S. Petschauer ◽  
J. Haidenbauer ◽  
N. Kaiser ◽  
Ulf-G. Meißner ◽  
W. Weise

2007 ◽  
Vol 22 (07n10) ◽  
pp. 555-564
Author(s):  
DEAN LEE

We discuss recent progress in the study of nuclear and neutron matter by combining chiral effective field theory with non-perturbative lattice methods. We present results for hot neutron matter at temperatures 20 to 40 MeV and densities below twice nuclear matter density. This proceedings article is a summary of results from work done in collaboration with Bugra Borasoy and Thomas Schaefer1.


2004 ◽  
Vol 13 (07) ◽  
pp. 1413-1418 ◽  
Author(s):  
MOISÉS RAZEIRA ◽  
CÉSAR A. Z. VASCONCELLOS

High density hadronic matter is studied in a generalized relativistic multi-baryon Lagrangian density mean field approach which contains nonlinear couplings of the σ, ω, ϱ fields. We compare the predictions of our model with estimates obtained within a phenomenological naive dimensional analysis based on the naturalness of the coefficients of the theory. Upon adjusting the model parameters to describe bulk static properties of ordinary nuclear matter, we show that our approach represents a natural modelling of nuclear matter under the extreme conditions of density as the ones found in the interior of neutron stars. Moreover, we show that naturalness play a major role in effective field theory and, in combination with experiment, could represent a relevant criterium to select a model among others in the description of global static properties of neutron stars.


2010 ◽  
Author(s):  
A. Lacour ◽  
U.-G. Meißner ◽  
J. A. Oller ◽  
Juan M. Nieves ◽  
Eulogio Oset ◽  
...  

2018 ◽  
Vol 98 (4) ◽  
Author(s):  
Andrea Endrizzi ◽  
Domenico Logoteta ◽  
Bruno Giacomazzo ◽  
Ignazio Bombaci ◽  
Wolfgang Kastaun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document