scholarly journals Niemann-Pick C1-Like 1 (NPC1L1) Protein in Intestinal and Hepatic Cholesterol Transport

2011 ◽  
Vol 73 (1) ◽  
pp. 239-259 ◽  
Author(s):  
Lin Jia ◽  
Jenna L. Betters ◽  
Liqing Yu
2021 ◽  
Vol 1863 (2) ◽  
pp. 183508
Author(s):  
Shunsuke Nashimoto ◽  
Saori Yagi ◽  
Naoki Takeda ◽  
Miku Nonaka ◽  
Yoh Takekuma ◽  
...  

2011 ◽  
Vol 300 (1) ◽  
pp. G164-G169 ◽  
Author(s):  
Michelle R. Adams ◽  
Eddy Konaniah ◽  
James G. Cash ◽  
David Y. Hui

The importance of Niemann-Pick C1 Like-1 (NPC1L1) protein in intestinal absorption of dietary sterols, including both cholesterol and phytosterols, is well documented. However, the exact mechanism by which NPC1L1 facilitates cholesterol transport remains controversial. This study administered 22-( N(-7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol) and [3H]cholesterol to Npc1l1+/+ and Npc1l1−/− mice to determine whether NPC1L1 facilitates dietary sterol uptake by enterocytes and/or participates in intracellular sterol delivery to the endoplasmic reticulum (ER) for lipoprotein assembly before secretion into plasma circulation. Results showed that [3H]cholesterol absorption was reduced but not abolished in Npc1l1−/− mice compared with Npc1l1+/+ mice. In the presence of Pluronic L-81 to block pre-chylomicron exit from the ER, significant amounts of [3H]cholesterol were found to be associated with lipid droplets in the intestinal mucosa of both Npc1l1+/+ and Npc1l1−/− mice, and the intracellular [3H]cholesterol can be esterified to cholesteryl esters. These results provided evidence indicating that the main function of NPC1L1 is to promote cholesterol uptake from the intestinal lumen but that it is not necessary for intracellular cholesterol transport to the ER. Surprisingly, NBD-cholesterol was taken up by intestinal mucosa, esterified to NBD-cholesteryl esters, and transported to plasma circulation to similar extent between Npc1l1+/+ and Npc1l1−/− mice. Ezetimibe treatment also had no impact on NBD-cholesterol absorption by Npc1l1+/+ mice. Thus, NBD-cholesterol absorption proceeds through an NPC1L1-independent and ezetimibe-insensitive sterol absorption mechanism. Taken together, these results indicate that NBD-cholesterol can be used to trace the alternative cholesterol absorption pathway but is not suitable for tracking NPC1L1-mediated cholesterol absorption.


2007 ◽  
Vol 408 (1) ◽  
Author(s):  
Laura Liscum

Dietary and biliary cholesterol are taken up by intestinal epithelial cells and transported to the endoplasmic reticulum. At the endoplasmic reticulum, cholesterol is esterified, packaged into chylomicrons and secreted into the lymph for delivery to the bloodstream. NPC1L1 (Niemann–Pick C1-like 1) is a protein on the enterocyte brush-border membrane that facilitates cholesterol absorption. Cholesterol's itinerary as it moves to the endoplasmic reticulum is unknown, as is the identity of any cellular proteins that facilitate the movement. Two proteins that play an important role in intracellular cholesterol transport and could potentially influence NPC1L1-mediated cholesterol uptake are NPC1 and NPC2 (Niemann–Pick type C disease proteins 1 and 2). In this issue of the Biochemical Journal, Dixit and colleagues show that the absence or presence of NPC1 and NPC2 has no effect on intestinal cholesterol absorption in the mouse. Thus neither protein fills the gap in our knowledge of intra-enterocyte cholesterol transport. Furthermore, the NPC1/NPC2 pathway would not be a good target for limiting the uptake of dietary cholesterol.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
D. Höglinger ◽  
T. Burgoyne ◽  
E. Sanchez-Heras ◽  
P. Hartwig ◽  
A. Colaco ◽  
...  

Abstract Transport of dietary cholesterol from endocytic organelles to the endoplasmic reticulum (ER) is essential for cholesterol homoeostasis, but the mechanism and regulation of this transport remains poorly defined. Membrane contact sites (MCS), microdomains of close membrane apposition, are gaining attention as important platforms for non-vesicular, inter-organellar communication. Here we investigate the impact of ER-endocytic organelle MCS on cholesterol transport. We report a role for Niemann-Pick type C protein 1 (NPC1) in tethering ER-endocytic organelle MCS where it interacts with the ER-localised sterol transport protein Gramd1b to regulate cholesterol egress. We show that artificially tethering MCS rescues the cholesterol accumulation that characterises NPC1-deficient cells, consistent with direct lysosome to ER cholesterol transport across MCS. Finally, we identify an expanded population of lysosome-mitochondria MCS in cells depleted of NPC1 or Gramd1b that is dependent on the late endosomal sterol-binding protein STARD3, likely underlying the mitochondrial cholesterol accumulation in NPC1-deficient cells.


EBioMedicine ◽  
2016 ◽  
Vol 4 ◽  
pp. 170-175 ◽  
Author(s):  
Janine Reunert ◽  
Manfred Fobker ◽  
Frank Kannenberg ◽  
Ingrid Du Chesne ◽  
Maria Plate ◽  
...  

2006 ◽  
Vol 281 (42) ◽  
pp. 31594-31604 ◽  
Author(s):  
Sunita R. Cheruku ◽  
Zhi Xu ◽  
Roxanne Dutia ◽  
Peter Lobel ◽  
Judith Storch

2004 ◽  
Vol 39 (Supplement 1) ◽  
pp. S363-S364
Author(s):  
E. P. Beltroy ◽  
J. A. Richardson ◽  
J. D. Horton ◽  
S. D. Turley ◽  
J. M. Dietschy

2020 ◽  
Vol 152 ◽  
pp. 525-534 ◽  
Author(s):  
Xiao-Xue Ke ◽  
Huijuan Chao ◽  
Muhammad Nadeem Abbas ◽  
Saima Kausar ◽  
Isma Gul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document