intestinal cholesterol absorption
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 27)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hai Hu ◽  
Wentao Shao ◽  
Qian Liu ◽  
Ning Liu ◽  
Qihan Wang ◽  
...  

AbstractCholesterol gallstone disease is a worldwide common disease. Cholesterol supersaturation in gallbladder bile is the prerequisite for its pathogenesis, while the mechanism is not completely understood. In this study, we find enrichment of gut microbiota (especially Desulfovibrionales) in patients with gallstone disease. Fecal transplantation of gut microbiota from gallstone patients to gallstone-resistant strain of mice can induce gallstone formation. Carrying Desulfovibrionales is associated with enhanced cecal secondary bile acids production and increase of bile acid hydrophobicity facilitating intestinal cholesterol absorption. Meanwhile, the metabolic product of Desulfovibrionales, H2S increase and is shown to induce hepatic FXR and inhibit CYP7A1 expression. Mice carrying Desulfovibrionales present induction of hepatic expression of cholesterol transporters Abcg5/g8 to promote biliary secretion of cholesterol as well. Our study demonstrates the role of gut microbiota, Desulfovibrionales, as an environmental regulator contributing to gallstone formation through its influence on bile acid and cholesterol metabolism.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1475
Author(s):  
Maite M. Schroor ◽  
Fatma B. A. Mokhtar ◽  
Jogchum Plat ◽  
Ronald P. Mensink

Single nucleotide polymorphisms (SNPs) have been associated with cholesterol metabolism and may partly explain large inter-individual variability in intestinal cholesterol absorption and endogenous cholesterol synthesis rates. This cross-sectional study therefore examined whether SNPs in genes encoding for proteins involved in intestinal cholesterol absorption (ABCG5, ABCG8, and NPC1L1) and endogenous cholesterol synthesis (CYP51A1, DHCR7, DHCR24, HMGCR, HSD17B7, LBR, and MSMO1) were associated with intestinal cholesterol absorption markers (total cholesterol (TC) standardized campesterol and sitosterol levels), an endogenous cholesterol synthesis marker (TC-standardized lathosterol levels), and serum low-density lipoprotein cholesterol (LDL-C) concentrations in a European cohort. ABCG5 (rs4245786) and the tag SNP ABCG8 (rs4245791) were significantly associated with serum campesterol and/or sitosterol levels. In contrast, NPC1L1 (rs217429 and rs217416) were significantly associated with serum lathosterol levels. The tag SNP in HMGCR (rs12916) and a SNP in LBR (rs12141732) were significantly associated with serum LDL-C concentrations. SNPs in the cholesterol absorption genes were not associated with serum LDL-C concentrations. SNPs in CYP51A1, DHCR24, HSD17B7, and MSMO1 were not associated with the serum non-cholesterol sterols and LDL-C concentrations. Given the variable efficiency of cholesterol-lowering interventions, the identification of SNPs associated with cholesterol metabolism could be a step forward towards personalized approaches.


Author(s):  
Chenyu Jiang ◽  
Ling-Zhi Cheong ◽  
Xue Zhang ◽  
Abdelmoneim H Ali ◽  
Qingzhe Jin ◽  
...  

Abstract Sphingomyelin (SM) is a widely occurring sphingolipid that is a major plasma membrane constituent. Milk and dairy products are rich SM sources, and human milk has high SM content. Numerous studies have evaluated the roles of SM in maintaining cell membrane structure and cellular signal transduction. There has been a growing interest in exploring the role of dietary SM, especially from human milk, in imparting health benefits. This review focuses on recent publications regarding SM content in several dietary sources and dietary SM metabolism. SM digestion and absorption are slow and incomplete and mainly occur in the middle sections of the small intestine. This review also evaluates the effect of dietary SM on gut health and cognitive development. Studies indicate that SM may promote gut health by reducing intestinal cholesterol absorption in adults. However, there has been a lack of data supporting clinical trials. An association between milk SM and neural development is evident before childhood. Hence, additional studies and well-designed randomized controlled trials that incorporate dietary SM evaluation, SM metabolism, and its long-term functions on infants and children are required.


2021 ◽  
Author(s):  
Xiaolan Bao ◽  
yuan xingyu ◽  
Xuexin Li ◽  
Xiaojing Liu

Abstract Background:Flaxseed peptide (FPs) showed serum cholesterol-lowering activity in SD rats fed a high-cholesterol diet, but the cholesterol-lowering amino acid sequences and mechanism of FPs were still unclear. Methods: FPs were separated via ultrafiltration, and the amino acid sequences of the selected fractions were determined via high-performance liquid chromatography- Electrospray Ionisation - Orbitrap- Mass spectrometry (HPLC-ESI-Orbitrap MS). These peptides then were synthesized by solid-phase synthesis (SPPS). IPPF with the highest CMSR was determined to exist in flaxseed protein by specific antibodies. The effects of IPPF on intestinal cholesterol absorption and hepatic cholesterol metabolism were investigated in Caco-2 cells and HepG2 cells.Results:1 kDa FP5 fraction had the highest cholesterol micelle solubility inhibition rate (CMSR) 72.39% compared with the other ultrafiltration fractions. Then Eleven peptides were identified from FP5. Ile-Pro-Pro-Phe (IPPF), with the highest CMSR 93.47%, was selected to research the cholesterol-lowering mechanism in Caco-2 and HepG2 cells. IPPF significantly reduces the amount of cholesterol transported in Caco2 cells and the amount of total cholesterol in HepG2 cells. IPPF significantly modulated the protein levels of NCP1L1 and ABCG5/8 in Caco2 cells and significantly reduced the mRNA levels of Srebp-2 and Hmgcr in HepG2 cells. Conclusion: IPPF inhibits cholesterol intestinal absorption through modulating the expression of cholesterol transporters in Caco-2 cells and reduces hepatic cholesterol synthesis through inhibiting the SREBP2-regulated mevalonate (HMGCR) pathway in HepG2 cells. IPPF is a new food-derived inhibitor of intestinal cholesterol absorption and hepatic cholesterol synthesis without side effects and provides a nutritional therapy component for hypercholesterolemia.


2021 ◽  
Vol 7 (29) ◽  
pp. eabg3188
Author(s):  
Miaoqing Hu ◽  
Fan Yang ◽  
Yawen Huang ◽  
Xin You ◽  
Desheng Liu ◽  
...  

Niemann-Pick C1-like 1 (NPC1L1) protein plays a central role in the intestinal cholesterol absorption and is the target of a drug, ezetimibe, which inhibits NPC1L1 to reduce cholesterol absorption. Here, we present cryo–electron microscopy structures of human NPC1L1 in apo state, cholesterol-enriched state, and ezetimibe-bound state to reveal molecular details of NPC1L1-mediated cholesterol uptake and ezetimibe inhibition. Comparison of these structures reveals that the sterol-sensing domain (SSD) could respond to the cholesterol level alteration by binding different number of cholesterol molecules. Upon increasing cholesterol level, SSD binds more cholesterol molecules, which, in turn, triggers the formation of a stable structural cluster in SSD, while binding of ezetimibe causes the deformation of the SSD and destroys the structural cluster, leading to the inhibition of NPC1L1 function. These results provide insights into mechanisms of NPC1L1 function and ezetimibe action and are of great significance for the development of new cholesterol absorption inhibitors.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 784
Author(s):  
Salman Ul Islam ◽  
Muhammad Bilal Ahmed ◽  
Haseeb Ahsan ◽  
Young-Sup Lee

Abnormal lipid metabolism leads to the development of hyperlipidemia, a common cause of multiple chronic disorders, including cardiovascular disease (CVD), obesity, diabetes, and cerebrovascular disease. Low-density lipoprotein cholesterol (LDL-C) currently remains the primary target for treatment of hyperlipidemia. Despite the advancement of treatment and prevention of hyperlipidemia, medications used to manage hyperlipidemia are limited to allopathic drugs, which present certain limitations and adverse effects. Increasing evidence indicates that utilization of phytochemicals and plant-based whole foods is an alternative and promising strategy to prevent hyperlipidemia and CVD. The current review focuses on phytochemicals and their pharmacological mode of actions for the regulation of LDL-C and prevention of CVD. The important molecular mechanisms illustrated in detail in this review include elevation of reverse cholesterol transport, inhibition of intestinal cholesterol absorption, acceleration of cholesterol excretion in the liver, and reduction of cholesterol synthesis. Moreover, the beneficial effects of plant-based whole foods, such as fresh fruits, vegetables, dried nuts, flax seeds, whole grains, peas, beans, vegan diets, and dietary fibers in LDL-C reduction and cardiovascular health are summarized. This review concludes that phytochemicals and plant-based whole foods can reduce LDL-C levels and lower the risk for CVD.


2021 ◽  
Vol 3 (1) ◽  
pp. 60-63
Author(s):  
Micheli Ito Gimenes Pires ◽  
Thaise de Araujo Wrubleski ◽  
Gustavo Lenci Marques

Considering that deaths from cardiovascular disease have been increasing in proportion to population ageing, prevention and treatment of dyslipidemia in elderly people is essential to avoid such outcome. Some biomarkers, albeit with limitations, have shown effectiveness in predicting cardiovascular events. Among them, blood levels of C-reactive protein, Lipoprotein A and, especially, coronary artery calcium. Dyslipidemia management primarily includes changes in lifestyle, such as physical activity, diet and smoking cessation. However, in elderly, drug therapy may be necessary, with statins being the first line treatment. In addition, therapies with drugs that decrease intestinal cholesterol absorption or increase LDL absorption by the liver, for example, have shown benefit when added to conventional therapy. Therefore, this review aims to contemplate some aspects of dyslipidemia in the elderly population, since appropriate management of such condition can significantly avoid undesirable outcomes.


2020 ◽  
Vol 11 ◽  
Author(s):  
Wen-wen Huang ◽  
Bi-hong Hong ◽  
Kai-kai Bai ◽  
Ran Tan ◽  
Ting Yang ◽  
...  

Hypercholesterolemia is a preventable risk factor for atherosclerosis and cardiovascular disease. However, the mechanisms whereby cis-palmitoleic acid (cPOA) and trans-palmitoleic acid (tPOA) promote cholesterol homeostasis and ameliorate hypercholesterolemia remain elusive. To investigate the effects of cPOA and tPOA on cholesterol metabolism and its mechanisms, we induced hypercholesterolemia in mice using a high-fat diet and then intragastrically administered cPOA or tPOA once daily for 4 weeks. tPOA administration reduced serum cholesterol, low-density lipoprotein, high-density lipoprotein, and hepatic free cholesterol and total bile acids (TBAs). Conversely, cPOA had no effect on these parameters except for TBAs. Histological examination of the liver, however, revealed that cPOA ameliorated hepatic steatosis more effectively than tPOA. tPOA significantly reduced the expression of 3-hydroxy-3-methyl glutaryl coenzyme reductase (HMGCR), LXRα, and intestinal Niemann-Pick C1-Like 1 (NPC1L1) and increased cholesterol 7-alpha hydroxylase (CYP7A1) in the liver, whereas cPOA reduced the expression of HMGCR and CYP7A1 in the liver and had no effect on intestinal NPC1L1. In summary, our results suggest that cPOA and tPOA reduce cholesterol synthesis by decreasing HMGCR levels. Furthermore, tPOA, but not cPOA, inhibited intestinal cholesterol absorption by downregulating NPC1L1. Both high-dose tPOA and cPOA may promote the conversion of cholesterol into bile acids by upregulating CYP7A1. tPOA and cPOA prevent hypercholesterolemia via distinct mechanisms.


Sign in / Sign up

Export Citation Format

Share Document