scholarly journals Intracranial and Abdominal Aortic Aneurysms: Similarities, Differences, and Need for a New Class of Computational Models

2008 ◽  
Vol 10 (1) ◽  
pp. 221-246 ◽  
Author(s):  
J.D. Humphrey ◽  
C.A. Taylor
Author(s):  
Evelyne van Dam ◽  
Marcel Rutten ◽  
Frans van de Vosse

Rupture risk of abdominal aortic aneurysms (AAA) based on wall stress analysis may be superior to the currently used diameter-based rupture risk prediction [4; 5; 6; 7]. In patient specific computational models for wall stress analysis, the geometry of the aneurysm is obtained from CT or MR images. The wall thickness and mechanical properties are mostly assumed to be homogeneous. The pathological AAA vessel wall may contain collageneous areas, but also calcifications, cholesterol crystals and large amounts of fat cells. No research has yet focused yet on the differences in mechanical properties of the components present within the degrading AAA vessel wall.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
J. S. Wilson ◽  
L. Virag ◽  
P. Di Achille ◽  
I. Karšaj ◽  
J. D. Humphrey

Most computational models of abdominal aortic aneurysms address either the hemodynamics within the lesion or the mechanics of the wall. More recently, however, some models have appropriately begun to account for the evolving mechanics of the wall in response to the changing hemodynamic loads. Collectively, this large body of work has provided tremendous insight into this life-threatening condition and has provided important guidance for current research. Nevertheless, there has yet to be a comprehensive model that addresses the mechanobiology, biochemistry, and biomechanics of thrombus-laden abdominal aortic aneurysms. That is, there is a pressing need to include effects of the hemodynamics on both the development of the nearly ubiquitous intraluminal thrombus and the evolving mechanics of the wall, which depends in part on biochemical effects of the adjacent thrombus. Indeed, there is increasing evidence that intraluminal thrombus in abdominal aortic aneurysms is biologically active and should not be treated as homogeneous inert material. In this review paper, we bring together diverse findings from the literature to encourage next generation models that account for the biochemomechanics of growth and remodeling in patient-specific, thrombus-laden abdominal aortic aneurysms.


Author(s):  
Evelyne van Dam ◽  
Marcel Rutten ◽  
Frans van de Vosse

Rupture of an abdominal aortic aneurysm (AAA) is a major cause of death in the Western world. When the AAA is diagnosed timely, rupture can be prevented by conventional surgical or by endovascular repair. To date, the decision to operate is based on geometry alone, but it has already been suggested that wall stress would be a better predictor [2]. Patient specific computational models have been developed to calculate wall stress [2; 5; 9; 8; 10]. In these models, the AAA wall is assumed to be homogeneous. Patient-specific inhomogeneities such as atherosclerotic plaques and calcifications have large effects on the maximum wall stress and wall stress distribution [6; 7]. Histological examination is not feasible for determining wall composition of patients.


2001 ◽  
Vol 71 (6) ◽  
pp. 341-344
Author(s):  
Johanna Rose ◽  
Ian Civil ◽  
Timothy Koelmeyer ◽  
David Haydock ◽  
Dave Adams

VASA ◽  
2005 ◽  
Vol 34 (4) ◽  
pp. 217-223 ◽  
Author(s):  
Diehm ◽  
Schmidli ◽  
Dai-Do ◽  
Baumgartner

Abdominal aortic aneurysm (AAA) is a potentially fatal condition with risk of rupture increasing as maximum AAA diameter increases. It is agreed upon that open surgical or endovascular treatment is indicated if maximum AAA diameter exceeds 5 to 5.5cm. Continuing aneurysmal degeneration of aortoiliac arteries accounts for significant morbidity, especially in patients undergoing endovascular AAA repair. Purpose of this review is to give an overview of the current evidence of medical treatment of AAA and describe prospects of potential pharmacological approaches towards prevention of aneurysmal degeneration of small AAAs and to highlight possible adjunctive medical treatment approaches after open surgical or endovascular AAA therapy.


VASA ◽  
2012 ◽  
Vol 41 (1) ◽  
pp. 3-4
Author(s):  
Diehm ◽  
Diehm ◽  
Dick

VASA ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 35-46
Author(s):  
Stephen Hofmeister ◽  
Matthew B. Thomas ◽  
Joseph Paulisin ◽  
Nicolas J. Mouawad

Abstract. The management of vascular emergencies is dependent on rapid identification and confirmation of the diagnosis with concurrent patient stabilization prior to immediate transfer to the operating suite. A variety of technological advances in diagnostic imaging as well as the advent of minimally invasive endovascular interventions have shifted the contemporary treatment algorithms of such pathologies. This review provides a comprehensive discussion on the current state and future trends in the management of ruptured abdominal aortic aneurysms as well as acute aortic dissections.


Sign in / Sign up

Export Citation Format

Share Document