Activation of the Epithelial Sodium Channel (ENaC) by Serine Proteases

2009 ◽  
Vol 71 (1) ◽  
pp. 361-379 ◽  
Author(s):  
Bernard C. Rossier ◽  
M. Jackson Stutts
2001 ◽  
Vol 12 (6) ◽  
pp. 1114-1121 ◽  
Author(s):  
MASATAKA ADACHI ◽  
KENICHIRO KITAMURA ◽  
TAKU MIYOSHI ◽  
TAKEFUMI NARIKIYO ◽  
KOZO IWASHITA ◽  
...  

Abstract. Prostasin, a novel serine protease, was purified from seminal fluid, and its cDNA sequence was determined. Expression of prostasin was detected in human tissues, including prostate, kidney, and lung, as well as bodily fluids, including seminal fluid and urine. However, its physiologic role in the human body is not known. Recently, a novel regulatory mechanism by which serine proteases activate epithelial sodium channel in theXenopusoocyte was identified. Therefore, it was hypothesized that prostasin could activate sodium currents, and a rat prostasin cDNA clone was isolated to investigate its physiologic function. Rat prostasin mRNA is expressed predominantly in kidney, and lower levels of expression were detected in prostate, lung, colon, stomach, and skin. These all are epithelial tissues in which the epithelial sodium channel (ENaC) is expressed. Coexpression of rat prostasin and rat ENaC inXenopusoocytes increased the amiloride-sensitive sodium current by twofold. Preincubation of oocytes that expressed prostasin with aprotinin did not result in an increase in sodium current, compared with the control. The removal of aprotinin from the bath solution resulted in a twofold increase of the current only in oocytes that expressed prostasin, which indicates that protease activity of prostasin is required for the ENaC activation. Expression of rat prostasin had no effect on the potassium current when expressed with rat renal outer medulla K channel, which shows specificity of prostasin action for ENaC. These results indicate that prostasin acts as an extracellular regulator of ENaC.


2016 ◽  
Vol 292 (1) ◽  
pp. 375-385 ◽  
Author(s):  
Christine A. Klemens ◽  
Robert S. Edinger ◽  
Lindsay Kightlinger ◽  
Xiaoning Liu ◽  
Michael B. Butterworth

2002 ◽  
Vol 444 (4) ◽  
pp. 549-555 ◽  
Author(s):  
Lisette Dijkink ◽  
Anita Hartog ◽  
René Bindels ◽  
Carel van Os

Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 724-724
Author(s):  
Shyama M E Masilamani ◽  
Gheun-Ho Kim ◽  
Mark A Knepper

P170 The mineralocorticoid hormone, aldosterone increases renal tubule Na absorption via increases in the protein abundances of the α-subunit of the epithelial sodium channel (ENaC) and the 70 kDa form of the γ- subunit of ENaC (JCI 104:R19-R23). This study assesses the affect of dietary salt restriction on the regulation of the epithelial sodium channel (ENaC) in the lung and distal colon, in addition to kidney, using semiquantitative immunoblotting. Rats were placed initially on either a control Na intake (0.02 meq/day), or a low Na intake (0.2 meq/day) for 10 days. The low salt treated rats demonstrated an increase in plasma aldosterone levels at day 10 (control = 0.78 + 0.32 nM; Na restricted = 3.50 + 1.30 nM). In kidney homogenates, there were marked increases in the band density of the α-subunit of ENaC (286 % of control) and the 70 kDa form of γ-subunit of ENaC (262 % of control), but no increase in the abundance of the β-subunit of ENaC. In lung homogenates, there was no significant change in the band densities of the α, β, or γ subunits of ENaC. In distal colon, there was an increase in the band density of the β-subunit of ENaC (311 % of control) and an increase in both the 85 kDa (2355% of control) and 70 kDa (843 % of control) form of the γ subunit of ENaC in response to dietary Na restriction. However, there was no significant difference in the band density of the α-subunit of ENaC. These findings demonstrate tissue specific regulation of the three subunits of ENaC in response to dietary salt restriction.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Tengis S Pavlov ◽  
Daria Ilatovskaya ◽  
Richard J Roman ◽  
Alexander Staruschenko

Sign in / Sign up

Export Citation Format

Share Document