physiologic function
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 34)

H-INDEX

36
(FIVE YEARS 4)

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 89
Author(s):  
Dang Wang ◽  
Ruixue Wang ◽  
Kui Li

The physiologic function of tripartite motif protein 56 (TRIM56), a ubiquitously expressed E3 ligase classified within the large TRIM protein family, remains elusive. Gene knockdown studies have suggested TRIM56 as a positive regulator of the type I interferon (IFN-I) antiviral response elicited via the Toll-like receptor 3 (TLR3) and cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathways, which detect and respond to danger signals—extracellular double-stranded (ds) RNA and cytosolic dsDNA, respectively. However, to what extent these pathways depend on TRIM56 in human cells is unclear. In addition, it is debatable whether TRIM56 plays a part in controlling the expression of IFN-stimulated genes (ISGs) resulting from IFN-I based antiviral treatment. In this study, we created HeLa-derived TRIM56 null cell lines by gene editing and used these cell models to comprehensively examine the impact of endogenous TRIM56 on innate antiviral responses. Our results showed that TRIM56 knockout severely undermined the upregulation of ISGs by extracellular dsRNA and that loss of TRIM56 weakened the response to cytosolic dsDNA. ISG induction and ISGylation following IFN-α stimulation, however, were not compromised by TRIM56 deletion. Using a vesicular stomatitis virus-based antiviral bioactivity assay, we demonstrated that IFN-α could efficiently establish an antiviral state in TRIM56 null cells, providing direct evidence that TRIM56 is not required for the general antiviral action of IFN-I. Altogether, these data ascertain the contributions of TRIM56 to TLR3- and cGAS–STING-dependent antiviral pathways in HeLa cells and add to our understanding of the roles this protein plays in innate immunity.


2022 ◽  
pp. 17-32
Author(s):  
Theodore C. Smith ◽  
Edmond Cohen
Keyword(s):  

2021 ◽  
Vol 11 (40) ◽  
pp. 156-156
Author(s):  
Daniela Puzzo ◽  
Agostino Palmeri

Background: The term hormesis refers to a biphasic dose-response phenomenon characterized by low-dose stimulation and high-dose inhibition represented by a J-shaped or U-shaped curve, depending on the parameter measured (Calabrese and Baldwin, Hum Exp Toxicol, 2002). Indeed, several, if not all, physiological molecules (i.e. glutamate, glucocorticoids, nitric oxide) are likely to present a hormetic effect, exhibiting opposite effects at high or low concentrations. In the last few years, we have focused on amyloid-beta (A), a peptide widely known because it is produced in high amounts during Alzheimer’s disease (AD). A is considered a toxic fragment causing synaptic dysfunction and memory impairment (Selkoe, Science, 2002). However, the peptide is normally produced in the healthy brain and growing evidences indicate that it might have a physiologic function. Aim: Based on previous results showing that picomolar concentrations of A42 enhance synaptic plasticity and memory (Puzzo et al, J Neurosci, 2008) and that endogenous A is necessary for synaptic plasticity and memory (Puzzo et al, Ann Neurol, 2011), the aim of our study was to demonstrate the hormetic role of A in synaptic plasticity and memory. Methods: We used 3-month old wild type mice to analyze how synaptic plasticity, measured on hippocampal slices in vitro, and spatial reference memory were modified by treatment with different doses of A (from 2 pM to 20 μM). Results: We demonstrated that A has a hormetic effect (Puzzo et al, Neurobiol Aging, 2012) with low-doses (200 pM) stimulating synaptic plasticity and memory and high-doses (≥ 200 nM) inhibiting these processes. Conclusions: Our results suggest that, paradoxically, very low doses of A might serve to enhance memory at appropriate concentrations and conditions. These findings raise several issues when designing effective and safe approaches to AD therapy.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1844
Author(s):  
Carmelo Gurnari ◽  
Simona Pagliuca ◽  
Valeria Visconte

Alternative RNA splicing (AS) is an essential physiologic function that diversifies the human proteome. AS also has a crucial role during cellular development. In fact, perturbations in RNA-splicing have been implicated in the development of several cancers, including myeloid malignancies. Splicing dysfunction can be independent of genetic lesions or appear as a direct consequence of mutations in components of the RNA-splicing machinery, such as in the case of mutations occurring in splicing factor genes (i.e., SF3B1, SRSF2, U2AF1) and their regulators. In addition, cancer cells exhibit marked gene expression alterations, including different usage of AS isoforms, possibly causing tissue-specific effects and perturbations of downstream pathways. This review summarizes several modalities leading to splicing diversity in myeloid malignancies.


2021 ◽  
Vol 118 (48) ◽  
pp. e2100195118
Author(s):  
Kelly A. McCorkell ◽  
Nipun Jayachandran ◽  
Michelle D. Cully ◽  
Jacquelyn Freund-Brown ◽  
Tiffany Weinkopff ◽  
...  

Global inactivation of IκB kinase (IKK)-α results in defective lymph node (LN) formation and B cell maturation, and loss of IKK-α–dependent noncanonical NF-κB signaling in stromal organizer and hematopoietic cells is thought to underlie these distinct defects. We previously demonstrated that this pathway is also activated in vascular endothelial cells (ECs). To determine the physiologic function of EC-intrinsic IKK-α, we crossed IkkαF/F mice with Tie2-cre or Cdh5-cre mice to ablate IKK-α in ECs. Notably, the compound defects of global IKK-α inactivation were recapitulated in IkkαTie2 and IkkαCdh5 mice, as both lacked all LNs and mature follicular and marginal zone B cell numbers were markedly reduced. However, as Tie2-cre and Cdh5-cre are expressed in all ECs, including blood forming hemogenic ECs, IKK-α was also absent in hematopoietic cells (HC). To determine if loss of HC-intrinsic IKK-α affected LN development, we generated IkkαVav mice lacking IKK-α in only the hematopoietic compartment. While mature B cell numbers were significantly reduced in IkkαVav mice, LN formation was intact. As lymphatic vessels also arise during development from blood ECs, we generated IkkαLyve1 mice lacking IKK-α in lymphatic ECs (LECs) to determine if IKK-α in lymphatic vessels impacts LN development. Strikingly, while mature B cell numbers were normal, LNs were completely absent in IkkαLyve1 mice. Thus, our findings reveal that IKK-α in distinct EC-derived compartments is uniquely required to promote B cell homeostasis and LN development, and we establish that LEC-intrinsic IKK-α is absolutely essential for LN formation.


2021 ◽  
Vol 5 (2) ◽  
pp. 26-33
Author(s):  
Ernesto Robalino Gonzaga ◽  
Irene Riestra Guiance ◽  
Richard Henriquez ◽  
Gerri Mortimore ◽  
Jan Freeman

Iron is an essential mineral that is vital for growth development, normal cellular function, synthesis of hormones and connective tissue, and most importantly, serves as a component of hemoglobin to carry oxygen to body tissues. The body finely regulates the amount of circulating and stored iron within the body to maintain concentration levels within range for optimal physiologic function. Without iron, the ability for cells to participate in electron transport and energy metabolism decreases. Furthermore, hemoglobin synthesis is altered, which leads to anemia and decreased oxygen delivery to tissue. Problems arise when there is too little or too much iron. This review explores the role of the liver in iron physiology, iron overload and discusses the most common causes of primary and secondary hepatic iron overload.


2021 ◽  
Vol 108 (Supplement_6) ◽  
Author(s):  
D A Amelinda ◽  
A Santoso ◽  
A Fawzy

Abstract Background Restoring penile function for urination and sexual activity, and achieving cosmetic result, are the goals of penile reconstruction including in post-malignancy reconstruction. Lack of studies has reported the usage of radial forearm flap on partial phalloplasty. Case Presentation A 31-years old male presented with fragile, cauliflower-like mass sizing 6x8 cm. The tumor had covered whole glans until the middle shaft of the penis. Plan of treatment for this patient started with complete excision of the tumor (partial penectomy), continued with phalloplasty. Phalloplasty consisted of using radial forearm flap (RFF) for penile foreskin (including glans), reconstructing corporal bodies using sartorius muscle, reshaping the penile glans, and urethroplasty to correct the hypospadic-looking urethra. Radial forearm flap of the non-dominant arm was implanted on the remaining foreskin of the penis, continued with wound care. On the 7th day postoperatively, no signs of necrotic, wound dehiscence, nor pus were observed, with capillary refill time on the distal fingers shown less than 2 seconds. Further evaluation is scheduled. Conclusions Loss of physiologic function usually follows partial penilectomy, which could lead to decrease in psychological quality of life. The main goal of the reconstruction of penile foreskin (including glans) using RFF is to form a newly formed penile glans that would have a cosmetic appearance nearly similar to a normal glans, which could improve its physiologic function and benefit psychologically. A challenge for health care centers in remote is is how to monitor and maintain a viable flap after the reconstruction and to keep a regular evaluation from the patient.


RNA Biology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Giulia Ada Corbet ◽  
Joshua R. Wheeler ◽  
Roy Parker ◽  
Kaitlin Weskamp
Keyword(s):  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A979-A979
Author(s):  
Megan J Ritter ◽  
Izuki Amano ◽  
Lorraine Soares De Oliveira ◽  
Kristen R Vella ◽  
Anthony Neil Hollenberg

Abstract Thyroid hormone (TH) plays an essential role in maintaining homeostasis and regulating metabolism in all organ systems beginning with embryogenesis and continuing throughout life. TH action is mediated by the thyroid hormone receptor (TR), which is a nuclear receptor, and it’s coregulators. The nuclear receptor corepressor 1 (NCoR1) and the silencing mediator of retinoid and thyroid hormone receptors (SMRT) are two critical corepressors of the TR that inhibit gene transcription in the absence of TH. Repression is mediated by complexing with histone deacetylase 3 (HDAC3), which is stabilized by NCoR1 and SMRT. NCoR1 and SMRT are critical for maintaining metabolic homeostasis and act to mediate energy expenditure, insulin sensitivity, and body weight. We sought to elucidate the roles of NCoR1 and SMRT in maintaining global physiologic function in the adult mouse. In order to study the post-natal role of these corepressors, we used a tamoxifen-inducible Cre recombinase (UBC-Cre-ERT2) to knock-out (KO) NCoR1, SMRT, or NCoR1 and SMRT together in adult mice because global deletion of either corepressor during embryogenesis is lethal. Mice were injected with tamoxifen at 8 weeks of age to KO either NCoR1 (NCoR1-KO; NKO), SMRT (SMRT-KO; SKO), or both NCoR1 and SMRT (double KO; DKO) and metabolic parameters were analyzed. While postnatal deletion of either NCoR1 or SMRT did not impact mortality, KO of both NCoR1 and SMRT resulted in a rapidly lethal phenotype heralded by weight loss, hypoglycemia and hypothermia. Metabolic phenotyping confirmed a loss of body mass and in particular fat mass in addition to a reduction in energy expenditure and increase in fecal caloric density. Further analysis showed the rapid development of hepatosteatosis and disturbances in lipid metabolism with a profound increase in beta-oxidation. We also found a reduction in HDAC3 protein levels in the DKO mice but no rapidly lethal phenotype in HDAC3 KO mice. Overall, we show that NCoR1 and SMRT together are critical for life as their deletion results in a rapidly lethal phenotype. While NCoR1 and SMRT are required to stabilize the corepressor complex, including HDAC3, HDAC3 KO resulted in a distinct and separate phenotype.


Sign in / Sign up

Export Citation Format

Share Document