Short TI inversion-recovery imaging of the liver: pulse-sequence optimization and comparison with spin-echo imaging.

Radiology ◽  
1989 ◽  
Vol 171 (2) ◽  
pp. 327-333 ◽  
Author(s):  
M Dousset ◽  
R Weissleder ◽  
R E Hendrick ◽  
D D Stark ◽  
C J Fretz ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
John Ford ◽  
Nesrin Dogan ◽  
Lori Young ◽  
Fei Yang

Objectives. Radiomic features extracted from diverse MRI modalities have been investigated regarding their predictive and/or prognostic value in a variety of cancers. With the aid of a 3D realistic digital MRI phantom of the brain, the aim of this study was to examine the impact of pulse sequence parameter selection on MRI-based textural parameters of the brain. Methods. MR images of the employed digital phantom were realized with SimuBloch, a simulation package made for fast generation of image sequences based on the Bloch equations. Pulse sequences being investigated consisted of spin echo (SE), gradient echo (GRE), spoiled gradient echo (SP-GRE), inversion recovery spin echo (IR-SE), and inversion recovery gradient echo (IR-GRE). Twenty-nine radiomic textural features related, respectively, to gray-level intensity histograms (GLIH), cooccurrence matrices (GLCOM), zone size matrices (GLZSM), and neighborhood difference matrices (GLNDM) were evaluated for the obtained MR realizations, and differences were identified. Results. It was found that radiomic features vary considerably among images generated by the five different T1-weighted pulse sequences, and the deviations from those measured on the T1 map vary among features, from a few percent to over 100%. Radiomic features extracted from T1-weighted spin-echo images with TR varying from 360 ms to 620 ms and TE = 3.4 ms showed coefficients of variation (CV) up to 45%, while up to 70%, for T2-weighted spin-echo images with TE varying over the range 60–120 ms and TR = 6400 ms. Conclusion. Variability of radiologic textural appearance on MR realizations with respect to the choice of pulse sequence and imaging parameters is feature-dependent and can be substantial. It calls for caution in employing MRI-derived radiomic features especially when pooling imaging data from multiple institutions with intention of correlating with clinical endpoints.


1995 ◽  
Vol 30 (2) ◽  
pp. 110-114 ◽  
Author(s):  
PAUL HILFIKER ◽  
MARCO ZENETTI ◽  
J??RG F. DEBATIN ◽  
GRAEME McKINNON ◽  
JUERG HODLER

Author(s):  
Mohamed Shawky ◽  
Rehab Habib ◽  
Ahmed Elsawaf

Abstract Background T1 inversion recovery (T1IR) sequence improved tissue contrast by providing higher gray matter-white matter contrast ratio (GM-WM contrast ratio) and higher lesion contrast noise ratio (CNR). This study aims to highlight its significance in the evaluation of space-occupying lesions whether intra-axial or extra-axial and also in multiple sclerosis (MS) by comparing it with T1 spin echo (T1SE) sequence. Result In a total of 50 patients, 14 patients with extra-axial lesions, 18 patients with intra-axial lesions, and 18 patients with multiple sclerosis were included. The CNR was significantly higher for pre-contrast T1IR images than for pre-contrast T1SE (− 13.04 (1.20) vs − 7.73 (0.70); p value < 0.01). After giving intravenous contrast media, CNR in T1SE was higher than T1IR (11.14 (1.75) vs 9.41 (1.83)) without statistical significance (p value = 0.19) and CNR was higher in T1IR than T1SE in lesions with low enhancement ratio (ER). As well, the overall number of lesions was higher on T1IR especially in MS (10.67 (2.26) vs 3.89 (1.05); p value < 0.01). Conclusion On pre-contrast sequences, T1IR could be used as an added sequence in most brain lesions giving higher lesion CNR. After giving intravenous contrast media, T1IR could be used in lesions with low ER. It also could be used in situations in which gadolinium injection is contraindicated and also could be used in follow-up of MS patient by detecting a higher number of lesions that can be easily missed in T1SE.


1993 ◽  
Vol 160 (3) ◽  
pp. 501-509 ◽  
Author(s):  
R N Low ◽  
I R Francis ◽  
R J Herfkens ◽  
R B Jeffrey ◽  
G M Glazer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document