Block Copolymer Electrolytes Synthesized by Atom Transfer Radical Polymerization for Solid-State, Thin-Film Lithium Batteries

2002 ◽  
Vol 5 (5) ◽  
pp. A85 ◽  
Author(s):  
Patrick E. Trapa ◽  
Biying Huang ◽  
You-Yeon Won ◽  
Donald R. Sadoway ◽  
Anne M. Mayes
2013 ◽  
Vol 364 ◽  
pp. 679-683
Author(s):  
Chang Hao Yan ◽  
Zhi Jiao Zhang ◽  
Hai Yan Chen ◽  
Zhong Yi Xie ◽  
Ting Zhu ◽  
...  

The polystyrene with end group of Br was synthesized by using MBrP as the initiator, CuBr/ PMDETA as the catalyst system according to atom transfer radical polymerization (ATRP). The effect of reaction temperature was studied and the system was confirmed as the active polymerization. Then PS-Br and CuBr/ PMDETA were respectively used as macroinitiator and catalyst to polymerize tBMA according to atom transfer radical polymerization (ATRP). The structure of the product was characterized by GPCFTIR1H-NMR. The amphiphilic block copolymer was obtained after hydrolysis. And the honeycomb porous film was prepared by PS-b-PMAA through using breath figure method.


2019 ◽  
Vol 89 (23-24) ◽  
pp. 5177-5186
Author(s):  
Chung-Feng Jeffrey Kuo ◽  
Jiong-Bo Chen ◽  
Po-Yen Chen ◽  
Garuda Raka Satria Dewangga

Adhesives, such as hot-melt adhesives (HMAs), are widely used in the textile industry for bonding layers of materials and have replaced traditional sewing methods. The block copolymer is a common type of HMA that provides excellent physical features and mechanical properties compared with others. Acrylate-based monomers, methyl methacrylate (MMA), and 2-ethylhexyl acrylate (2-EHA) were used as ingredients to form a linear block copolymer using atom transfer radical polymerization. MMA provides excellent cohesive strength, while 2-EHA provides good adhesion properties. An end-brominated poly(methyl methacrylate) (PMMA-Br) macroinitiator was synthesized from a MMA monomer and initiator, with the best composition obtained by the addition of a 0.6 mol initiator. The macroinitiator had the lowest molecular weight with highest conversion (97%). The addition of a 0.3 mol macroinitiator showed the lowest molecular weight with the highest conversion of acrylic copolymer PMMA- b-poly(2-ethylhexyl acrylate) (PEHA). The glass transition temperature increased with the addition of the macroinitiator concentration, from −43.7℃ to −37.6℃. The thermal stability was reduced with the addition of macroinitiator content, from 332.37℃ to 286.81℃. The shear strength and peel strength of the PMMA- b-PEHA HMAs on nylon fabrics were enhanced from 11.24 to 16.92 kg cm−2 and from 0.29 to 0.61 kg cm−1, respectively, and did not change significantly after being washed 50 times and then kept in low-temperature storage, with the addition of the macroinitiator concentration. The block copolymer PMMA- b-PEHA prepared in this study could be used as a HMA for nylon fabric bonding systems.


2020 ◽  
Vol 9 (6) ◽  
pp. 806-812
Author(s):  
Zongyu Wang ◽  
Jaejun Lee ◽  
Zhenhua Wang ◽  
Yuqi Zhao ◽  
Jiajun Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document