Optical Model for the Ellipsometric Characterization of Low Energy Ion Beam Damage in Single‐Crystal Silicon

1986 ◽  
Vol 133 (8) ◽  
pp. 1729-1733 ◽  
Author(s):  
J. L. Buckner ◽  
D. J. Vitkavage ◽  
E. A. Irene ◽  
T. M. Mayer
2021 ◽  
Author(s):  
Lianmin Yin ◽  
Yifan Dai ◽  
Hao Hu

Abstract In order to obtain ultra-smooth surfaces of single-crystal silicon in ultra-precision machining, an accurate study of the deformation mechanism, mechanical properties, and the effect of oxide film under load is required. The mechanical properties of single-crystal silicon and the phase transition after nanoindentation experiments are investigated by nanoindentation and Raman spectroscopy, respectively. It is found that pop-in events appear in the theoretical elastic domain of single-crystal silicon due to the presence of oxide films, which directly leads the single crystal silicon from the elastic deformation zone into the plastic deformation zone. In addition, the mechanical properties of single-crystal silicon are more accurately measured after it has entered the full plastic deformation.


2020 ◽  
Vol 40 (12) ◽  
pp. 1222001
Author(s):  
宋辞 Song Ci ◽  
田野 Tian Ye ◽  
石峰 Shi Feng ◽  
张坤 Zhang Kun ◽  
沈永祥 Shen Yongxiang

1998 ◽  
Vol 64 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Kazuo Sato ◽  
Mitsuhiro Shikida ◽  
Yoshihiro Matsushima ◽  
Takashi Yamashiro ◽  
Kazuo Asaumi ◽  
...  

Author(s):  
V. S. Kovivchak ◽  
T. V. Panova ◽  
O. V. Krivozubov ◽  
N. A. Davletkil’deev ◽  
E. V. Knyazev

2005 ◽  
Vol 297-300 ◽  
pp. 292-298 ◽  
Author(s):  
Satoru Koyama ◽  
Kazuki Takashima ◽  
Yakichi Higo

Reliability is one of the most critical issues for designing practical MEMS devices. In particular, the fracture toughness of micro-sized MEMS elements is important, as micro/nano-sized flaws can act as a crack initiation sites to cause failure of such devices. Existing MEMS devices commonly use single crystal silicon. Fracture toughness testing upon micro-sized single crystal silicon was therefore carried out to examine whether a fracture toughness measurement technique, based upon the ASTM standard, is applicable to 1/1000th sized silicon specimens. Notched cantilever beam type specimens were prepared by focused ion beam machining. Two specimens types with different notch orientations were prepared. The notch plane/direction were (100)/[010], and (110)/[ _ ,110], respectively. Fracture toughness tests were carried out using a mechanical testing machine for micro-sized specimens. Fracture has been seen to occur in a brittle manner in both orientations. The provisional fracture toughness values (KQ) are 1.05MPam1/2 and 0.96MPam1/2, respectively. These values meet the micro-yielding criteria for plane strain fracture toughness values (KIC). Fracture toughness values for the orientations tested are of the same order as values in the literature. The results obtained in this investigation indicate that the fracture toughness measurement method used is applicable for micro-sized components of single crystal silicon in MEMS devices.


Sign in / Sign up

Export Citation Format

Share Document