Determination of Factors Governing Degradation of Anode-Supported Solid Oxide Fuel Cells as Influenced by Current Density and Humidity

2021 ◽  
Vol 103 (1) ◽  
pp. 1121-1128
Author(s):  
Riyan Achmad Budiman ◽  
Katherine Develos Bagarinao ◽  
Tomohiro Ishiyama ◽  
Toshiaki Yamaguchi ◽  
Haruo Kishimoto ◽  
...  
2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 73-73
Author(s):  
Riyan Achmad Budiman ◽  
Katherine Develos Bagarinao ◽  
Tomohiro Ishiyama ◽  
Toshiaki Yamaguchi ◽  
Haruo Kishimoto ◽  
...  

Author(s):  
Gianfranco DiGiuseppe ◽  
Robert Draper

The technology of tubular solid oxide fuel cells of cylindrical geometry has advanced enough such that several demonstration units are currently being tested. This paper presents a simple analytical model for the determination of the current density as a function of axial active cell length under idealized conditions. In addition, a current density axial profile under generator conditions obtained from modeling work is used and compared to the simpler approach. The resulting current density axial profiles are then used to design current takeoff in bus bars where the losses in the power leads are minimized. The result is an optimal scenario where bus bars can be considered to be surfaces that do not significantly affect the natural current density of the solid oxide fuel cell.


Author(s):  
Qiuyang Chen ◽  
Jian Zhang ◽  
Qiuwang Wang ◽  
Min Zeng

The concentration gradient of fuel and oxidant gas is great in the plane normal to the solid oxide fuel cells (SOFC) three-phase-boundary (TPB) layer, especially in the porous electrode. We present a novel interconnector design, termed bilayer interconnector, for SOFC. It can distribute the fuel and air gas in the plane normal to the SOFC TPB layer. In this paper, we develop a 3D model to study the current density of the SOFC with conventional and novel bi-layer interconnectors. The numerical results show that the novel SOFC design Rib1 can slightly enhance the mass transfer in the porous anode and current density. The novel SOFC design Rib2 can improve the current density significantly under low electrical conductivity of interconnector.


2004 ◽  
Vol 2 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Ke An ◽  
Kenneth L. Reifsnider

Solid oxide fuel cells (SOFCs) are expected to be a future power source. Simulation analyses of SOFCs can help to understand well the interactive functions among the multiphysics phenomena in the SOFC system. A three-dimensional multiphysics finite-element model was used to simulate the performance of a half-cell SOFC with (Pr0.7Sr0.3)MnO3±δ∕8mol% yttria-stabilized zirconia (8YSZ) composite cathode on one side of the 8YSZ electrolyte before and after aging. Multiphysics phenomena in the SOFC were considered in the modeling. The current/voltage curves simulated matched the experimental data before and after aging. The average current density was found to have a linear relationship to the logarithm of the effective exchange current density. The effect of the effective ionic conductivity of the composite cathode was more apparent for small total effective ionic conductivity values than for large ones.


2017 ◽  
Vol 37 (11) ◽  
pp. 3565-3578 ◽  
Author(s):  
D.N. Boccaccini ◽  
O. Sevecek ◽  
H.L. Frandsen ◽  
I. Dlouhy ◽  
S. Molin ◽  
...  

2018 ◽  
Vol 43 (31) ◽  
pp. 14638-14647 ◽  
Author(s):  
Bora Timurkutluk ◽  
Serkan Toros ◽  
Sezer Onbilgin ◽  
Habip Gokay Korkmaz

Sign in / Sign up

Export Citation Format

Share Document