Effect of Bi-Layer Interconnector Design on the Current Density of Solid Oxide Fuel Cells

Author(s):  
Qiuyang Chen ◽  
Jian Zhang ◽  
Qiuwang Wang ◽  
Min Zeng

The concentration gradient of fuel and oxidant gas is great in the plane normal to the solid oxide fuel cells (SOFC) three-phase-boundary (TPB) layer, especially in the porous electrode. We present a novel interconnector design, termed bilayer interconnector, for SOFC. It can distribute the fuel and air gas in the plane normal to the SOFC TPB layer. In this paper, we develop a 3D model to study the current density of the SOFC with conventional and novel bi-layer interconnectors. The numerical results show that the novel SOFC design Rib1 can slightly enhance the mass transfer in the porous anode and current density. The novel SOFC design Rib2 can improve the current density significantly under low electrical conductivity of interconnector.

2021 ◽  
Vol 103 (1) ◽  
pp. 1121-1128
Author(s):  
Riyan Achmad Budiman ◽  
Katherine Develos Bagarinao ◽  
Tomohiro Ishiyama ◽  
Toshiaki Yamaguchi ◽  
Haruo Kishimoto ◽  
...  

2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 73-73
Author(s):  
Riyan Achmad Budiman ◽  
Katherine Develos Bagarinao ◽  
Tomohiro Ishiyama ◽  
Toshiaki Yamaguchi ◽  
Haruo Kishimoto ◽  
...  

2004 ◽  
Vol 2 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Ke An ◽  
Kenneth L. Reifsnider

Solid oxide fuel cells (SOFCs) are expected to be a future power source. Simulation analyses of SOFCs can help to understand well the interactive functions among the multiphysics phenomena in the SOFC system. A three-dimensional multiphysics finite-element model was used to simulate the performance of a half-cell SOFC with (Pr0.7Sr0.3)MnO3±δ∕8mol% yttria-stabilized zirconia (8YSZ) composite cathode on one side of the 8YSZ electrolyte before and after aging. Multiphysics phenomena in the SOFC were considered in the modeling. The current/voltage curves simulated matched the experimental data before and after aging. The average current density was found to have a linear relationship to the logarithm of the effective exchange current density. The effect of the effective ionic conductivity of the composite cathode was more apparent for small total effective ionic conductivity values than for large ones.


2008 ◽  
Vol 41 (4) ◽  
pp. 246-253 ◽  
Author(s):  
Hidetoshi Mori ◽  
Noboru Nonaka ◽  
Mitsukuni Mizuno ◽  
Hiroya Abe ◽  
Makio Naito

2016 ◽  
Vol 302 ◽  
pp. 378-386 ◽  
Author(s):  
Vanja Subotić ◽  
Christoph Schluckner ◽  
Hartmuth Schroettner ◽  
Christoph Hochenauer

Sign in / Sign up

Export Citation Format

Share Document