Heat-Pipe Effects in Polymer-Electrolyte-Fuel-Cell Gas-Diffusion Layers

2019 ◽  
Vol 16 (2) ◽  
pp. 1603-1613 ◽  
Author(s):  
Tatsumi Kitahara ◽  
Toshiaki Konomi ◽  
Hironori Nakajima ◽  
Yoshinobu Tateishi ◽  
Makoto Murata ◽  
...  

Author(s):  
Adam S. Hollinger ◽  
Stefan T. Thynell

Localized temperature gradients in a polymer electrolyte fuel cell are known to decrease the durability of the polymer membrane. The most important factor in controlling these temperature gradients is the thermal contact resistance at the interface of the gas diffusion layer and the bipolar plate. Here we present thermal contact resistance measurements of carbon paper and carbon cloth gas diffusion layers over a pressure range of 0.7–14.5 MPa. Contact resistances are highly dependent upon the clamping pressure applied to a fuel cell, and in the present work, contact resistances vary from 3.5E−4 to 2.0E−5 m2K/W, decreasing non-linearly over the pressure range for each material tested. The data presented here also shows that the thermal resistance of the sample is negligible in comparison to the thermal contact resistance. Thermal uniformity in a fuel cell is desirable, and the measurements presented here can be used to more accurately predict temperature distribution in a polymer electrolyte fuel cell.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2967
Author(s):  
Adrian Mularczyk ◽  
Andreas Michalski ◽  
Michael Striednig ◽  
Robert Herrendörfer ◽  
Thomas J. Schmidt ◽  
...  

Facilitating the proper handling of water is one of the main challenges to overcome when trying to improve fuel cell performance. Specifically, enhanced removal of liquid water from the porous gas diffusion layers (GDLs) holds a lot of potential, but has proven to be non-trivial. A main contributor to this removal process is the gaseous transport of water following evaporation inside the GDL or catalyst layer domain. Vapor transport is desired over liquid removal, as the liquid water takes up pore space otherwise available for reactant gas supply to the catalytically active sites and opens up the possibility to remove the waste heat of the cell by evaporative cooling concepts. To better understand evaporative water removal from fuel cells and facilitate the evaporative cooling concept developed at the Paul Scherrer Institute, the effect of gas speed (0.5–10 m/s), temperature (30–60 °C), and evaporation domain (0.8–10 mm) on the evaporation rate of water from a GDL (TGP-H-120, 10 wt% PTFE) has been investigated using an ex situ approach, combined with X-ray tomographic microscopy. An along-the-channel model showed good agreement with the measured values and was used to extrapolate the differential approach to larger domains and to investigate parameter variations that were not covered experimentally.


Sign in / Sign up

Export Citation Format

Share Document