scholarly journals 3D Modeling of One and Two Component Gas Flow in Fibrous Microstructures in Fuel Cells by Using the Lattice-Boltzmann Method

2013 ◽  
Vol 50 (2) ◽  
pp. 207-219 ◽  
Author(s):  
J. P. Brinkmann ◽  
D. Froning ◽  
U. Reimer ◽  
V. Schmidt ◽  
W. Lehnert ◽  
...  

Author(s):  
In-Won Park ◽  
Myung-Seob Shin ◽  
Sung-Joon Byun ◽  
Joon-Yong Yoon

Fuel ◽  
2017 ◽  
Vol 205 ◽  
pp. 232-246 ◽  
Author(s):  
Junjian Wang ◽  
Qinjun Kang ◽  
Yuzhu Wang ◽  
Rajesh Pawar ◽  
Sheik S. Rahman

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xin Xin ◽  
Bo Yang ◽  
Tianfu Xu ◽  
Yingli Xia ◽  
Si Li

As a clean energy source with ample reserves, natural gas hydrate is studied extensively. However, the existing hydrate production from hydrate deposits faces many challenges, especially the uncertain mechanism of complex multiphase seepage in the sediments. The relative permeability of hydrate-bearing sediments is key to evaluating gas and water production. To study such permeability, a set of pore-scale microsimulations were carried out using the Lattice Boltzmann Method. To account for the differences between hydrate saturation and hydrate pore habit, we performed a gas-water multiphase flow simulation that combines the fluids’ fundamental properties (density ratio, viscosity ratio, and wettability). Results show that the Lattice Boltzmann Method simulation is valid compared to the pore network simulation and analysis models. In gas and water multiphase flow systems, the viscous coupling effect permits water molecules to block gas flow severely due to viscosity differences. In hydrate-bearing sediments, as hydrate saturation increases, the water saturation S w between the continuous and discontinuous gas phase decreases from 0.45 to 0.30 while hydrate saturation increases from 0.2 to 0.6. Besides, the residual water and gas increased, and the capillary pressure increased. Moreover, the seepage of gas and water became more tedious, resulting in decreased relative permeability. Compared with different hydrate pore habits, pore-filling thins the pores, restricting the gas flow than the grain-coating. However, hydrate pore habit barely affects water relative permeability.


2018 ◽  
Vol 187 ◽  
pp. 245-255 ◽  
Author(s):  
Tianyi Zhao ◽  
Huawei Zhao ◽  
Xiangfang Li ◽  
Zhengfu Ning ◽  
Qing Wang ◽  
...  

Author(s):  
Mayken Espinoza ◽  
Bengt Sundén ◽  
Martin Andersson

Relative simplicity of use, no pollutions and high-efficiency are some of the advantages that will make fuel cells one of the best devices for getting electrical energy in the near future. Micro- and mesoscale modeling of fuel cells gives an important perspective about their efficiency and behavior during the energy conversion process. Due to the high cost of carrying out laboratory experiments related to different materials at the micro- and mesoscales, modeling and simulation of the different elements of the fuel cells are a useful approach and a point of departure for the experimental validation. This paper describes fuel cell modeling starting with the fundamentals, including physical and chemical characteristics of fuel cells, moving to the current state of the study of modeling based on the Lattice Boltzmann Method (LBM). The principal characteristics and elements of the fuel cells are presented in general as well as the main differences between the Proton Exchange Membrane Fuel Cells (PEMFC) and Solid Oxide Fuel Cells (SOFC). Fuel cells have several parts that are modeled on the micro- and mesoscale level. These parts, conditions and governing equations for different transport phenomena are displayed in this manuscript. A detailed description of the main issues, advantages and recent advances related to Lattice Boltzmann Method as a method for modeling several physical processes that take place within fuel cells are presented.


Sign in / Sign up

Export Citation Format

Share Document