Determination of Phosphoric Acid Coverage on Pt/C for High Temperature-Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) Using in-Situ X-Ray Absorption Spectroscopy

2020 ◽  
Vol 45 (21) ◽  
pp. 12161-12169 ◽  
Author(s):  
Utku U. Ince ◽  
Henning Markötter ◽  
Nan Ge ◽  
Merle Klages ◽  
Jan Haußmann ◽  
...  

2015 ◽  
Vol 6 ◽  
pp. 68-83 ◽  
Author(s):  
Roswitha Zeis

The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode–membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell operation. Various novel tools for characterizing and diagnosing HT-PEMFCs and key components are presented in this review, including FTIR and Raman spectroscopy, confocal Raman microscopy, synchrotron X-ray imaging, X-ray microtomography, and atomic force microscopy.


Author(s):  
A. A. Tahrim ◽  
I. N. H. M. Amin

High-temperature polymer electrolyte membrane fuel cell as a sustainable green technology has been developed throughout the years as it provides several benefits compared to Nafion-based fuel cells (e.g., CO tolerance, improved kinetic and enhance water management). Polybenzimidazole which one of the best membrane candidates was extensively studied due to excellent properties to be used in high-temperature application. Impregnating polybenzimidazole with phosphoric acid are most commonly practised as an electrolyte membrane in the PEMFC. In this paper, recent advancement of the existing literature regarding work revolving polybenzimidazole to improve the performance of phosphoric acid doped polybenzimidazole membrane for high-temperature polymer electrolyte membrane fuel cell are reviewed. Notable works such as using aluminium containing silicate (Al-Si), silicon carbide whisker (mSiC) and sulfonated graphene oxide in the composite PBI derivatives were observed. Proton conductivity are recorded at 0.371, 0.271 and 0.280 S/cm, respectively.


2021 ◽  
Vol 502 ◽  
pp. 229993
Author(s):  
Dana Schonvogel ◽  
Julian Büsselmann ◽  
Henrike Schmies ◽  
Hendrik Langnickel ◽  
Peter Wagner ◽  
...  

2014 ◽  
Vol 21 (6) ◽  
pp. 1319-1326 ◽  
Author(s):  
S. H. Eberhardt ◽  
F. Marone ◽  
M. Stampanoni ◽  
F. N. Büchi ◽  
T. J. Schmidt

Synchrotron-based X-ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high-temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro- and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40–100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation-based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non-operating fuel cell. The non-destructive imaging methodology was verified by comparing image-based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.


Sign in / Sign up

Export Citation Format

Share Document