Towards the 3D Thin-Film Li-Ion Battery: A Novel Solution-Based Process for the Deposition of (Multi-)Metal Oxide Coatings on High Aspect Ratio Features

2015 ◽  
2004 ◽  
Vol 126 (1-2) ◽  
pp. 156-162 ◽  
Author(s):  
Ho-Jin Kweon ◽  
JeonJoon Park ◽  
JunWon Seo ◽  
GeunBae Kim ◽  
BokHwan Jung ◽  
...  

Author(s):  
Sarah Jessl ◽  
Simon Engelke ◽  
Davor Copic ◽  
Jeremy J. Baumberg ◽  
Michael De Volder

2008 ◽  
Vol 182 (1) ◽  
pp. 349-352 ◽  
Author(s):  
Eiji Hosono ◽  
Hirofumi Matsuda ◽  
Itaru Honma ◽  
Shinobu Fujihara ◽  
Masaki Ichihara ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 744
Author(s):  
Thabang Ronny Somo ◽  
Tumiso Eminence Mabokela ◽  
Daniel Malesela Teffu ◽  
Tshepo Kgokane Sekgobela ◽  
Brian Ramogayana ◽  
...  

In the recent years, lithium-ion batteries have prevailed and dominated as the primary power sources for mobile electronic applications. Equally, their use in electric resources of transportation and other high-level applications is hindered to some certain extent. As a result, innovative fabrication of lithium-ion batteries based on best performing cathode materials should be developed as electrochemical performances of batteries depends largely on the electrode materials. Elemental doping and coating of cathode materials as a way of upgrading Li-ion batteries have gained interest and have modified most of the commonly used cathode materials. This has resulted in enhanced penetration of Li-ions, ionic mobility, electric conductivity and cyclability, with lesser capacity fading compared to traditional parent materials. The current paper reviews the role and effect of metal oxides as coatings for improvement of cathode materials in Li-ion batteries. For layered cathode materials, a clear evaluation of how metal oxide coatings sweep of metal ion dissolution, phase transitions and hydrofluoric acid attacks is detailed. Whereas the effective ways in which metal oxides suppress metal ion dissolution and capacity fading related to spinel cathode materials are explained. Lastly, challenges faced by olivine-type cathode materials, namely; low electronic conductivity and diffusion coefficient of Li+ ion, are discussed and recent findings on how metal oxide coatings could curb such limitations are outlined.


2015 ◽  
Vol 57 ◽  
pp. 88-99 ◽  
Author(s):  
Argelia Almaguer-Flores ◽  
Phaedra Silva-Bermudez ◽  
Rey Galicia ◽  
Sandra E. Rodil

Author(s):  
Anna K. Boehm ◽  
Samantha Husmann ◽  
Marie Besch ◽  
Oliver Janka ◽  
Volker Presser ◽  
...  

2016 ◽  
Vol 163 (13) ◽  
pp. A2733-A2744 ◽  
Author(s):  
Jesse J. Wouters ◽  
M. Isabel Tejedor-Tejedor ◽  
Julio J. Lado ◽  
Rodolfo Perez-Roa ◽  
Marc A. Anderson

Sign in / Sign up

Export Citation Format

Share Document