metal oxide films
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 47)

H-INDEX

36
(FIVE YEARS 4)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 98
Author(s):  
Eugeny Ryndin ◽  
Natalia Andreeva ◽  
Victor Luchinin

The article presents the results of the development and study of a combined circuitry (compact) model of thin metal oxide films based memristive elements, which makes it possible to simulate both bipolar switching processes and multilevel tuning of the memristor conductivity taking into account the statistical variability of parameters for both device-to-device and cycle-to-cycle switching. The equivalent circuit of the memristive element and the equation system of the proposed model are considered. The software implementation of the model in the MATLAB has been made. The results of modeling static current-voltage characteristics and transient processes during bipolar switching and multilevel turning of the conductivity of memristive elements are obtained. A good agreement between the simulation results and the measured current-voltage characteristics of memristors based on TiOx films (30 nm) and bilayer TiO2/Al2O3 structures (60 nm/5 nm) is demonstrated.


Author(s):  
Ashley Arcidiacono ◽  
Alex J. Robb ◽  
Rafael A. Masitas ◽  
Sahan R. Salpage ◽  
Grace M. McLeod ◽  
...  

Langmuir ◽  
2021 ◽  
Author(s):  
Zijing Xia ◽  
Vepa Rozyyev ◽  
Anil U. Mane ◽  
Jeffrey W. Elam ◽  
Seth B. Darling

2021 ◽  
Vol 22 (11) ◽  
pp. 5839
Author(s):  
Natalia Wrońska ◽  
Nadia Katir ◽  
Katarzyna Miłowska ◽  
Nisrine Hammi ◽  
Marta Nowak ◽  
...  

Synthetic materials commonly used in the packaging industry generate a considerable amount of waste each year. Chitosan is a promising feedstock for the production of functional biomaterials. From a biological point of view, chitosan is very attractive for food packaging. The purposes of this study were to evaluate the antibacterial activity of a set of chitosan-metal oxide films and different chitosan-modified graphene (oxide) films against two foodborne pathogens: Campylobacter jejuni ATCC 33560 and Listeria monocytogenes 19115. Moreover, we wanted to check whether the incorporation of antimicrobial constituents such as TiO2, ZnO, Fe2O3, Ag, and graphene oxide (GO) into the polymer matrices can improve the antibacterial properties of these nanocomposite films. Finally, this research helps elucidate the interactions of these materials with eukaryotic cells. All chitosan-metal oxide films and chitosan-modified graphene (oxide) films displayed improved antibacterial (C. jejuni ATCC 33560 and L. monocytogenes 19115) properties compared to native chitosan films. The CS-ZnO films had excellent antibacterial activity towards L. monocytogenes (90% growth inhibition). Moreover, graphene-based chitosan films caused high inhibition of both tested strains. Chitosan films with graphene (GO, GOP, GOP-HMDS, rGO, GO-HMDS, rGOP), titanium dioxide (CS-TiO2 20:1a, CS-TiO2 20:1b, CS-TiO2 2:1, CS-TiO2 1:1a, CS-TiO2 1:1b) and zinc oxide (CS-ZnO 20:1a, CS-ZnO 20:1b) may be considered as a safe, non-cytotoxic packaging materials in the future.


Sign in / Sign up

Export Citation Format

Share Document