Neuropeptide Y Detection Using Aptamer-Modified Electrodes By Electrochemical Impedance Spectroscopy

2021 ◽  
Vol MA2021-01 (63) ◽  
pp. 1668-1668
Author(s):  
Luis F. Lopez ◽  
Lyza Martinez ◽  
Kelly Lozano ◽  
Lisandro Cunci
Batteries ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 16 ◽  
Author(s):  
Jonathan Schneider ◽  
Eduard Bulczak ◽  
Gumaa El-Nagar ◽  
Marcus Gebhard ◽  
Paul Kubella ◽  
...  

The performance of all-V redox flow batteries (VRFB) will decrease when they are exposed to dynamic electrochemical cycling, but also when they are in prolonged contact with the acidic electrolyte. These phenomena are especially severe at the negative side, where the parasitic hydrogen evolution reaction (HER) will be increasingly favored over the reduction of V(III) with ongoing degradation of the carbon felt electrode. Bismuth, either added to the electrolyte or deposited onto the felt, has been reported to suppress the HER and therefore to enhance the kinetics of the V(II)/V(III) redox reaction. This study is the first to investigate degradation effects on bismuth-modified electrodes in the negative half-cell of a VRFB. By means of a simple impregnation method, a commercially available carbon felt was decorated with Bi 2 O 3 , which is supposedly present as Bi(0) under the working conditions at the negative side. Modified and unmodified felts were characterized electrochemically using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a three-electrode setup. Surface morphology of the electrodes and composition of the negative half-cell electrolyte were probed using scanning electron microscopy (SEM) and X-ray fluorescence spectroscopy (TXRF), respectively. This was done before and after the electrodes were subjected to 50 charge-discharge cycles in a battery test bench. Our results suggest that not only the bismuth catalyst is dissolved from the electrode during battery operation, but also that the presence of bismuth in the system has a strong accelerating effect on electrode degradation.


2014 ◽  
Vol 18 (08n09) ◽  
pp. 642-651 ◽  
Author(s):  
Audacity Maringa ◽  
Tebello Nyokong

We report on the electrodeposition of gold nanoparticles ( AuNPs ) on a glassy carbon electrode (GCE) followed by deposition of nickel tetrasulfonated phthalocyanine ( NiTSPc ) film by electropolymerization (poly- NiTSPc -GCE) to form Poly- NiTSPc / AuNPs -GCE. The presence of the gold nanoparticles caused a lowering of the anodic and cathodic peak separation (ΔE p ) of ferricyanide from 126 mV on poly- NiTSPc to 110 mV on poly- NiTSPc / AuNPs . The electrooxidation of nitrite improved on modified electrodes compared to GCE, with the latter giving E p = 0.78 V and the modified electrodes gave E p = 0.62 V or 0.61 V. Poly- NiTSPc / AuNPs -GCE had higher currents compared to poly- NiTSPc -GCE. This indicates the enhancement effect caused by the AuNPs . Electrochemical impedance spectroscopy and chronoamperometric studies also showed that poly- NiTSPc / AuNPs -GCE was a better electrocatalyst than poly- NiTSPc -GCE or AuNPs -GCE.


2004 ◽  
Vol 108 (46) ◽  
pp. 17973-17982 ◽  
Author(s):  
Sérgio V. P. Barreira ◽  
Vladimir García-Morales ◽  
Carlos M. Pereira ◽  
José A. Manzanares ◽  
Fernando Silva

Author(s):  
Nadica Abazovic ◽  
Tatjana Savic ◽  
Tatjana Novakovic ◽  
Mirjana Comor ◽  
Zorica Mojovic

Solvothermaly synthesized zirconium oxide nanopowders, pure and doped with various amounts of iron ions (1 - 20 %), were used as modifiers of glassy carbon electrode. The modified electrodes were tested in the reaction of electrochemical oxidation of 2,4,6-trichlorophenol (TCP) in order to investigate the influence of doping on electrochemical performance of zirconia matrix. The techniques of cyclic voltammetry and electrochemical impedance spectroscopy were employed. Cyclic voltammetry showed that electrooxidation of TCP proceeded through oxidation of hydroxyl group. Possible pathway included formation of quinones and formation of polyphenol film on the electrode surface leading to the electrode fouling. Iron doping enhanced the activity of zirconia matrix towards TCP electrooxidation. Electrochemical impedance spectroscopy showed the importance of iron content in zirconia matrix for preferable pathway of TCP electrooxidation. Quinone formation pathway was favored by low iron doped zirconia (doped with 1% of iron), while polyphenol film formation on the electrode surface was more pronounced at samples with higher iron ion content (for doping with 10 and 20 % of iron). The sample with 5 % of added iron ions, showed intermediate behavior where formed polyphenol film showed slight degradation.


Sign in / Sign up

Export Citation Format

Share Document