Batteries
Latest Publications


TOTAL DOCUMENTS

380
(FIVE YEARS 223)

H-INDEX

21
(FIVE YEARS 11)

Published By Mdpi Ag

2313-0105

Batteries ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Gints Kucinskis ◽  
Beate Kruze ◽  
Prasad Korde ◽  
Anatolijs Sarakovskis ◽  
Arturs Viksna ◽  
...  

Both the binder and solid–electrolyte interface play an important role in improving the cycling stability of electrodes for Na-ion batteries. In this study, a novel tetrabutylammonium (TBA) alginate binder is used to prepare a Na0.67MnO2 electrode for sodium-ion batteries with improved electrochemical performance. The ageing of the electrodes is characterized. TBA alginate-based electrodes are compared to polyvinylidene fluoride- (PVDF) and Na alginate-based electrodes and show favorable electrochemical performance, with gravimetric capacity values of up to 164 mAh/g, which is 6% higher than measured for the electrode prepared with PVDF binder. TBA alginate-based electrodes also display good rate capability and improved cyclability. The solid–electrolyte interface of TBA alginate-based electrodes is similar to that of PVDF-based electrodes. As the only salt of alginic acid soluble in non-aqueous solvents, TBA alginate emerges as a good alternative to PVDF binder in battery applications where the water-based processing of electrode slurries is not feasible, such as the demonstrated case with Na0.67MnO2.


Batteries ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Lukman Noerochim ◽  
Alvalo Toto Wibowo ◽  
Widyastuti ◽  
Achmad Subhan ◽  
Bambang Prihandoko ◽  
...  

Graphite as a commercial anode for lithium-ion batteries has significant safety concerns owing to lithium dendrite growth at low operating voltages. Li4Ti5O12 is a potential candidate to replace graphite as the next-generation anode of lithium-ion batteries. In this work, fluoride-doped Li4Ti5O12 was successfully synthesized with a direct double coating of carbon and nitrogen using a solid-state method followed by the pyrolysis process of polyaniline. X-ray diffraction (XRD) results show that the addition of fluoride is successfully doped to the spinel-type structure of Li4Ti5O12 without any impurities being detected. The carbon and nitrogen coating are distributed on the surface of Li4Ti5O12 particles, as shown in the Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM-EDS) image. The Transmission Electron Microscopy (TEM) image shows a thin layer of carbon coating on the Li4Ti5O12 surface. The fluoride-doped Li4Ti5O12 has the highest specific discharge capacity of 165.38 mAh g−1 at 0.5 C and capacity fading of 93.51% after 150 cycles compared to other samples, indicating improved electrochemical performance. This is attributed to the synergy between the appropriate amount of carbon and nitrogen coating, which induced a high mobility of electrons and larger crystallite size due to the insertion of fluoride to the spinel-type structure of Li4Ti5O12, enhancing lithium-ion transfer during the insertion/extraction process.


Batteries ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Shofirul Sholikhatun Nisa ◽  
Mintarsih Rahmawati ◽  
Cornelius Satria Yudha ◽  
Hanida Nilasary ◽  
Hartoto Nursukatmo ◽  
...  

Li-ion batteries as a support for future transportation have the advantages of high storage capacity, a long life cycle, and the fact that they are less dangerous than current battery materials. Li-ion battery components, especially the cathode, are the intercalation places for lithium, which plays an important role in battery performance. This study aims to obtain the LiNixMnyCozO2 (NMC) cathode material using a simple flash coprecipitation method. As precipitation agents and pH regulators, oxalic acid and ammonia are widely available and inexpensive. The composition of the NMC mole ratio was varied, with values of 333, 424, 442, 523, 532, 622, and 811. As a comprehensive study of NMC, lithium transition-metal oxide (LMO, LCO, and LNO) is also provided. The crystal structure, functional groups, morphology, elemental composition and material behavior of the particles were all investigated during the heating process. The galvanostatic charge–discharge analysis was tested with cylindrical cells and using mesocarbon microbeads/graphite as the anode. Cells were tested at 2.7–4.25 V at 0.5 C. Based on the analysis results, NMC with a mole ratio of 622 showed the best characteristicd and electrochemical performance. After 100 cycles, the discharged capacity reaches 153.60 mAh/g with 70.9% capacity retention.


Batteries ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Samuel Adjepong Danquah ◽  
Jacob Strimaitis ◽  
Clifford F. Denize ◽  
Sangram K. Pradhan ◽  
Messaoud Bahoura

All-solid-state batteries (ASSBs) are gaining traction in the arena of energy storage due to their promising results in producing high energy density and long cycle life coupled with their capability of being safe. The key challenges facing ASSBs are low conductivity and slow charge transfer kinetics at the interface between the electrode and the solid electrolyte. Garnet solid-state electrolyte has shown promising results in improving the ion conductivity but still suffers from poor capacity retention and rate performance due to the interfacial resistance between the electrodes. To improve the interfacial resistance, we prepared a composite consisting of Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) garnet material as the ceramic, polyethylene oxide (PEO) as the polymer, and lithium hexafluorophosphate (LiPF6) as the salt. These compounds are mixed in a stoichiometric ratio and developed into a very thin disc-shaped solid electrolyte. The LLCZN provides a lithium-ion transport path to enhance the lithium-ion conduction during charging and discharging cycles, while the LiPF6 contributes more lithium ions via the transport path. The PEO matrix in the composite material aids in bonding the compounds together and creating a large contact area, thereby reducing the issue of large interfacial resistance. FESEM images show the porous nature of the electrolyte which promotes the movement of lithium ions through the electrolyte. The fabricated LLCZN/PEO/LiPF6 solid-state electrolyte shows outstanding electrochemical stability that remains at 130 mAh g−1 up to 150 charging and discharging cycles at 0.05 mA cm−2 current. All the specific capacities were calculated based on the mass of the cathode material (LiCoO2). In addition, the coin cell retains 85% discharge capacity up to 150 cycles with a Coulombic efficiency of approximately 98% and energy efficiency of 90% during the entire cycling process.


Batteries ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Yu-Sheng Su ◽  
Kuang-Che Hsiao ◽  
Pedaballi Sireesha ◽  
Jen-Yen Huang

The structural and interfacial stability of silicon-based and lithium metal anode materials is essential to their battery performance. Scientists are looking for a better inactive material to buffer strong volume change and suppress unwanted surface reactions of these anodes during cycling. Lithium silicates formed in situ during the formation cycle of silicon monoxide anode not only manage anode swelling but also avoid undesired interfacial interactions, contributing to the successful commercialization of silicon monoxide anode materials. Additionally, lithium silicates have been further utilized in the design of advanced silicon and lithium metal anodes, and the results have shown significant promise in the past few years. In this review article, we summarize the structures, electrochemical properties, and formation conditions of lithium silicates. Their applications in advanced silicon and lithium metal anode materials are also introduced.


Batteries ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Min Li ◽  
Alessandro Bina ◽  
Mariam Maisuradze ◽  
Marco Giorgetti

Symmetric batteries, in which the same active material is used for the positive and the negative electrode, simplifying the manufacture process and reducing the fabrication cost, have attracted extensive interest for large-scale stationary energy storage. In this paper, we propose a symmetric battery based on titanium hexacyanoferrate (TiHCF) with two well-separated redox peaks of Fe3+/Fe2+ and Ti4+/Ti3+ and tested it in aqueous Na-ion/ K-ion/Mg-ion electrolytes. The result shows that all the symmetric batteries exhibit a voltage plateau centered at around 0.6 V, with discharge capacity around 30 mAhg−1 at C/5. Compared to a Mg-ion electrolyte, the TiHCF symmetric batteries in Na-ion and K-ion electrolytes have better stability. The calculated diffusion coefficient of Na+, K+, and Mg2+ are in the same order of magnitude, which indicates that the three-dimensional ionic channels and interstices in the lattice of TiHCF are large enough for an efficient Na+, K+ and Mg2+ insertion and extraction.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 88
Author(s):  
Natascia Andrenacci ◽  
Francesco Vellucci ◽  
Vincenzo Sglavo

The prediction of capacity degradation, and more generally of the behaviors related to battery aging, is useful in the design and use phases of a battery to help improve the efficiency and reliability of energy systems. In this paper, a stochastic model for the prediction of battery cell degradation is presented. The proposed model takes its cue from an approach based on Markov chains, although it is not comparable to a Markov process, as the transition probabilities vary with the number of cycles that the cell has performed. The proposed model can reproduce the abrupt decrease in the capacity that occurs near the end of life condition (80% of the nominal value of the capacity) for the cells analyzed. Furthermore, we illustrate the ability of this model to predict the capacity trend for a lithium-ion cell with nickel manganese cobalt (NMC) at the cathode and graphite at the anode, subjected to a life cycle in which there are different aging factors, using the results obtained for cells subjected to single aging factors.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 87
Author(s):  
Emil Holm Kirk ◽  
Filippo Fenini ◽  
Sara Noriega Oreiro ◽  
Anders Bentien

The maximum operation temperature of the vanadium solution in vanadium flow batteries is typically limited to 40 °C to prevent the damaging thermal precipitation of V2O5. Therefore, the operation of batteries at high ambient temperatures is an important aspect to tackle for stationary storage. In the present work, a comprehensive study of the high temperature stability of redox solutions for vanadium flow batteries was performed. In particular, focus was placed on a comparison between batch and in operando precipitation experiments. It was found that, despite being a widely used method in the literature, caution should be taken when assessing the precipitation through capacity fade due to the large influence of external oxidation and cycling parameters, plausibly leading to an incorrect interpretation of the results. The in operando experiments consistently show a precipitation temperature almost 10–20 °C higher than in the batch tests at a 100% state of charge for the same time lapse.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 86
Author(s):  
Morena Falcone ◽  
Eleonora Palka Bayard De Volo ◽  
Ali Hellany ◽  
Claudio Rossi ◽  
Beatrice Pulvirenti

The environment has gained significant importance in recent years, and companies involved in several technology fields are moving in the direction of eco-friendly solutions. One of the most discussed topics in the automotive field is lithium-ion battery packs for electric vehicles and their battery thermal management systems (BTMSs). This work aims to show the most used lithium-ion battery pack cooling methods and technologies with best working temperature ranges together with the best performances. Different cooling methods are presented and discussed, with a focus on the comparison between air-cooling systems and liquid-cooling systems. In this context, a BTMS for cylindrical cells is presented, where the cells are arranged in staggered lines embedded in a solid structure and cooled through forced convection within channels. The thermal behavior of this BTMS is simulated by employing a computational fluid dynamics (CFD) approach. The effect of the geometry of the BTMS on the cell temperature distribution is obtained. It is shown that the use of materials with additives for the solid structure enhances the performance of the system, giving lower temperatures to the cells. The system is tested with air-cooling and water-cooling, showing that the best performances are obtained with water-cooling in terms of cell packing density and lowest cell temperatures.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 85
Author(s):  
Marco Ströbel ◽  
Julia Pross-Brakhage ◽  
Mike Kopp ◽  
Kai Peter Birke

Tracking the cell temperature is critical for battery safety and cell durability. It is not feasible to equip every cell with a temperature sensor in large battery systems such as those in electric vehicles. Apart from this, temperature sensors are usually mounted on the cell surface and do not detect the core temperature, which can mean detecting an offset due to the temperature gradient. Many sensorless methods require great computational effort for solving partial differential equations or require error-prone parameterization. This paper presents a sensorless temperature estimation method for lithium ion cells using data from electrochemical impedance spectroscopy in combination with artificial neural networks (ANNs). By training an ANN with data of 28 cells and estimating the cell temperatures of eight more cells of the same cell type, the neural network (a simple feed forward ANN with only one hidden layer) was able to achieve an estimation accuracy of ΔT= 1 K (10 ∘C <T< 60 ∘C) with low computational effort. The temperature estimations were investigated for different cell types at various states of charge (SoCs) with different superimposed direct currents. Our method is easy to use and can be completely automated, since there is no significant offset in monitoring temperature. In addition, the prospect of using the above mentioned approach to estimate additional battery states such as SoC and state of health (SoH) is discussed.


Sign in / Sign up

Export Citation Format

Share Document