Pyruvate and citric acid cycle carbon requirements in isolated skeletal muscle mitochondria

2004 ◽  
Vol 286 (3) ◽  
pp. C565-C572 ◽  
Author(s):  
Jeffrey I. Messer ◽  
Matthew R. Jackman ◽  
Wayne T. Willis

Carbohydrate depletion precipitates fatigue in skeletal muscle, but, because pyruvate provides both acetyl-CoA for mainline oxidation and anaplerotic carbon to the citric acid cycle (CAC), the mechanism remains obscure. Thus pyruvate and CAC kinetic parameters were independently quantified in mitochondria isolated from rat mixed skeletal muscle. Mitochondrial oxygen consumption rate ( Jo) was measured polarographically while either pyruvate or malate was added stepwise in the presence of a saturating concentration of the other substrate. These substrate titrations were carried out across a physiological range of fixed extramitochondrial ATP free energy states (ΔGP), established with a creatine kinase energy clamp, and also at saturating [ADP]. The apparent Km,malate for mitochondrial Jo ranged from 21 to 32 μM, and the apparent Km,pyruvate ranged from 12 to 26 μM, with both substrate Km values increasing as ΔGP declined. Vmax for both substrates also increased as ΔGP fell, reflecting thermodynamic control of Jo. Reported in vivo skeletal muscle [malate] are >10-fold greater than the Km,malate determined in this study. In marked contrast, the Km,pyruvate determined is near the [pyruvate] reported in muscle approaching exhaustion associated with glycogen depletion. When data were evaluated in the context of a linear thermodynamic force-flow (ΔGP- Jo) relationship, the ΔGP- Jo slope was essentially insensitive to changes in [malate] in the range observed in vivo but decreased markedly with declining [pyruvate] across the physiological range. Mitochondrial respiration is particularly sensitive to variations in [pyruvate] in the physiological range. In contrast, physiological [malate] exerts very little, if any, influence on mitochondrial pyruvate oxidation measured in vitro.

1971 ◽  
Vol 2 (3-4) ◽  
pp. 143-148 ◽  
Author(s):  
O. Hockwin ◽  
G. Blum ◽  
I. Korte ◽  
T. Murata ◽  
W. Radetzki ◽  
...  

1995 ◽  
Vol 312 (1) ◽  
pp. 75-81 ◽  
Author(s):  
B Sumegi ◽  
B Podanyi ◽  
P Forgo ◽  
K E Kover

The oxidation of [3-13C]pyruvate and [3-13C]propionate was studied in vivo in infused rats. The infused [3-13C]pyruvate was quickly converted to [3-13C]lactate in the blood, and the [3-13C]lactate formed was well metabolized in both normoxic and ischaemic hearts. Large differences (200-600%) in the 13C enrichment of alanine (C-3) and acetyl-CoA (C-2) compared with lactate (C-3) were found in both normoxic and ischaemic hearts, suggesting that the extracellular [3-13C]lactate preferentially entered a region of the cytoplasm which specifically transfers the labelled pyruvate (formed from [3-13C]lactate) to the mitochondria. The highly enriched mitochondrial pyruvate gave high enrichment in alanine and acetyl-CoA, which was detected by 1H- and 13C-NMR spectroscopy. Ischaemia increased 13C incorporation into the main cytoplasmic lactate pool and decreased 13C incorporation into citric acid cycle intermediates, mainly decreasing the pyruvate anaplerosis. Isoprenaline-induced ischaemia of the heart caused only a slight decrease in pyruvate oxidation. In contrast to the decreased anaplerosis of pyruvate, the anaplerosis of propionate (and propionyl-carnitine) increased significantly in ischaemic hearts, which may contribute to the protective effect of propionyl-carnitine seen in ischaemia. In addition, we found that [3-13C]propionate preferentially labelled aspartate C-3 in rat heart, suggesting incomplete randomization of label in the succinyl-CoA-malate span of the citric acid cycle. These data show that proton observed 13C edited spectroscopic methods, i.e. heteronuclear spin-echo and the one-dimensional heteronuclear multiple quantum coherence sequence, can be successfully used to study heart metabolism in vivo.


1986 ◽  
Vol 56 (1) ◽  
pp. 153-162 ◽  
Author(s):  
James B. Russell ◽  
Neil Forsberg

1. Rumen microorganisms convert trans-aconitate to tricarballylate. The following experiments describe factors affecting the yield of tricarballylate, its absorption from the rumen into blood and its effect on mammalian citric acid cycle activity in vitro.2. When mixed rumen microorganisms were incubated in vitro with Timothy hay (Phleum praiense L.) and 6.7 mM-trans-aconitate, 64 % of the trans-aconitate was converted to tricarballylate. Chloroform and nirate treatments inhibited methane production and increased the yield of tricarballylate to 82 and 75% respectively.3. Sheep given gelatin capsules filled with 20 g trans-aconitate absorbed tricarballylate and the plasma concentration ranged from 0.3 to 0.5 mM 9 h after administration. Feeding an additional 40 g potassium chloride had little effect on plasma tricarballylate concentrations. Between 9 and 36 h there was a nearly linear decline in plasma tricarballylate.4. Tricarballylate was a competitive inhibitor of the enzyme, aconitate hydratase (aconitase; EC 4.2.1.3), and the inhibitor constant, KI, was 0.52 mM. This KIvalue was similar to the Michaelis-Menten constant (Km) of the enzyme for citrate.5. When liver slices from sheep were incubated with increasing concentrations of tricarballylate, [I4C]acetate oxidation decreased. However, even at relatively high concentrations (8 mM), oxidation was still greater than 80% of the maximum. Oxidation of [I4C]acetate by isolated rat liver cells was inhibited to a greater extent by tricarballylate. Concentrations as low as 0.5 mM caused a 30% inhibition of citric acid cycle activity.


2006 ◽  
Vol 282 (7) ◽  
pp. 4524-4532 ◽  
Author(s):  
Peppi Koivunen ◽  
Maija Hirsilä ◽  
Anne M. Remes ◽  
Ilmo E. Hassinen ◽  
Kari I. Kivirikko ◽  
...  

The stability and transcriptional activity of the hypoxia-inducible factors (HIFs) are regulated by two oxygen-dependent events that are catalyzed by three HIF prolyl 4-hydroxylases (HIF-P4Hs) and one HIF asparaginyl hydroxylase (FIH). We have studied possible links between metabolic pathways and HIF hydroxylases by analyzing the abilities of citric acid cycle intermediates to inhibit purified human HIF-P4Hs and FIH. Fumarate and succinate were identified as in vitro inhibitors of all three HIF-P4Hs, fumarate having Ki values of 50–80 μm and succinate 350–460 μm, whereas neither inhibited FIH. Oxaloacetate was an additional inhibitor of all three HIF-P4Hs with Ki values of 400–1000 μm and citrate of HIF-P4H-3, citrate being the most effective inhibitor of FIH with a Ki of 110 μm. Culturing of cells with fumarate diethyl or dimethyl ester, or a high concentration of monoethyl ester, stabilized HIF-1α and increased production of vascular endothelial growth factor and erythropoietin. Similar, although much smaller, changes were found in cultured fibroblasts from a patient with fumarate hydratase (FH) deficiency and upon silencing FH using small interfering RNA. No such effects were seen upon culturing of cells with succinate diethyl or dimethyl ester. As FIH was not inhibited by fumarate, our data indicate that the transcriptional activity of HIF is quite high even when binding of the coactivator p300 is prevented. Our data also support recent suggestions that the increased fumarate and succinate levels present in the FH and succinate dehydrogenase-deficient tumors, respectively, can inhibit the HIF-P4Hs with consequent stabilization of HIF-αs and effects on tumor pathology.


Sign in / Sign up

Export Citation Format

Share Document