rumen microorganisms
Recently Published Documents


TOTAL DOCUMENTS

467
(FIVE YEARS 62)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Zhi Yuan Ma ◽  
Ju Wang Zhou ◽  
Si Yu Yi ◽  
Min Wang ◽  
Zhi Liang Tan

In vitro rumen batch culture is a technology to simulate rumen fermentation by inoculating microorganisms from rumen fluids. Although inocula (INO) are commonly derived from fresh rumen fluids, frozen rumen fluids are also employed for the advantages of storing, transporting, and preserving rumen microorganisms. The effects of frozen INO on microbial fermentation and community may be interfered with by substrate type, which has not been reported. This study was designed to test whether rumen fluid treatments (i.e., fresh and frozen) could interact with incubated substrates. A complete block design with fractional arrangement treatment was used to investigate the effects of INO (fresh or frozen rumen fluids) and concentrate-to-forage ratios (C/F, 1:4 or 1:1) on rumen fermentation and microbial community. The effects of increasing C/F were typical, including increased dry matter (DM) degradation and total volatile fatty acids (VFA) concentration (P < 0.001), and decreased acetate to propionate ratio (P = 0.01) and bacterial diversity of richness and evenness (P ≤ 0.005) with especially higher fermentative bacteria such as genus Rikenellaceae_RC, F082, Prevotella, Bacteroidales_BS11, Muribaculaceaege, and Christensenellaceae_R-7 (P ≤ 0.04). Although frozen INO decreased (P < 0.001) DM degradation and altered rumen fermentation with lower (P ≤ 0.01) acetate to propionate ratio and molar proportion of butyrate than fresh INO, typical effects of C/F were independent of INO, as indicated by insignificant INO × C/F interaction on substrate degradation, VFA profile and bacterial community (P ≥ 0.20). In summary, the effect of C/F on fermentation and bacterial diversity is not interfered with by INO type, and frozen INO can be used to distinguish the effect of starch content.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hanna Huuki ◽  
Seppo Ahvenjärvi ◽  
Paula Lidauer ◽  
Milka Popova ◽  
Johanna Vilkki ◽  
...  

The development of the functional rumen in calves involves a complex interplay between the host and host-related microbiome. Attempts to modulate rumen microbial community establishment may therefore have an impact on weaning success, calf health, and animal performance later in life. In this experiment, we aimed to elucidate how rumen liquid inoculum from an adult cow, provided to calves during the pre-weaning period, influences the establishment of rumen bacterial, archaeal, fungal, and ciliate protozoan communities in monozygotic twin calves (n = 6 pairs). The calves were divided into treatment (T-group) and control (C-group) groups, where the T-group received fresh rumen liquid as an oral inoculum during a 2–8-week period. The C-group was not inoculated. The rumen microbial community composition was determined using bacterial and archaeal 16S ribosomal RNA (rRNA) gene, protozoal 18S rRNA gene, and fungal ITS1 region amplicon sequencing. Animal weight gain and feed intake were monitored throughout the experiment. The T-group tended to have a higher concentrate intake (Treatment: p < 0.08) and had a significantly higher weekly weight gain (Treatment: p < 0.05), but no significant difference in volatile fatty acid concentrations between the groups was observed. In the T-group, the inoculum stimulated the earlier establishment of mature rumen-related bacterial taxa, affecting significant differences between the groups until 6 weeks of age. The inoculum also increased the archaeal operational taxonomic unit (OTU) diversity (Treatment: p < 0.05) but did not affect the archaeal quantity. Archaeal communities differed significantly between groups until week 4 (p = 0.02). Due to the inoculum, ciliate protozoa were detected in the T-group in week 2, while the C-group remained defaunated until 6 weeks of age. In week 8, Eremoplastron dilobum was the dominant ciliate protozoa in the C-group and Isotricha sp. in the T-group, respectively. The Shannon diversity of rumen anaerobic fungi reduced with age (Week: p < 0.01), and community establishment was influenced by a change of diet and potential interaction with other rumen microorganisms. Our results indicate that an adult cow rumen liquid inoculum enhanced the maturation of bacterial and archaeal communities in pre-weaning calves’ rumen, whereas its effect on eukaryotic communities was less clear and requires further investigation.


2022 ◽  
Author(s):  
Shuli Yang ◽  
Guangrong Zhang ◽  
Mingyue Deng ◽  
Liyuan Sun ◽  
Shichun He ◽  
...  

Abstract The gut microbial community of mammals, especially ruminants, plays an important role at different ages of the host. Ruminants have a unique compartment in their digestive tract; the rumen, comprising microorganisms that can effectively decompose plant fibers for the host to transform into milk and for growth and development, which is important for meat production. Colonization of rumen microorganisms is closely related to host developmental stage and affects host performance production. There is little information regarding initial colonization and subsequent changes of the rumen microbial population in wild grazing animals, from birth to adulthood. This study investigated the rumen bacterial and fungal populations of grazing yaks in five experimental groups, ranging from a few days after birth to adulthood using amplicon sequencing. Results indicated that rumen microbial communities of these yaks undergo a gradual change from 5 to 180 days after birth, with the bacterial and fungal diversity stabilizing at the age of 2 years. Additionally, Ruminococcus was detected in 5-day-old yak rumens, with a high percentage of Penicillium and other microbial species are important for normal rumen function detected in the adult rumen. The changes to the yak rumen microbial community after birth were reflected in the increased anaerobic fiber degradation group, and decreased aerobic and facultative anaerobic bacteria. Microbial diversity and abundance in the yak rumen increased with age. Rumen microbial composition of 6-month and 2-year-old yaks had obvious homogeneity. There were some differences in dominant rumen microorganisms among the different age groups. Further studies are required to confirm the functions of these differential and dominant microorganisms in each age group.


Fermentation ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Amin Omar Hendawy ◽  
Satoshi Sugimura ◽  
Kan Sato ◽  
Mohamed Mohsen Mansour ◽  
Ayman H. Abd Abd El-Aziz ◽  
...  

Enzymes excreted by rumen microbiome facilitate the conversion of ingested plant materials into major nutrients (e.g., volatile fatty acids (VFA) and microbial proteins) required for animal growth. Diet, animal age, and health affect the structure of the rumen microbial community. Pathogenic organisms in the rumen negatively affect fermentation processes in favor of energy loss and animal deprivation of nutrients in ingested feed. Drawing from the ban on antibiotic use during the last decade, the livestock industry has been focused on increasing rumen microbial nutrient supply to ruminants through the use of natural supplements that are capable of promoting the activity of beneficial rumen microflora. Selenium (Se) is a trace mineral commonly used as a supplement to regulate animal metabolism. However, a clear understanding of its effects on rumen microbial composition and rumen fermentation is not available. This review summarized the available literature for the effects of Se on specific rumen microorganisms along with consequences for rumen fermentation and digestibility. Some positive effects on total VFA, the molar proportion of propionate, acetate to propionate ratio, ruminal NH3-N, pH, enzymatic activity, ruminal microbiome composition, and digestibility were recorded. Because Se nanoparticles (SeNPs) were more effective than other forms of Se, more studies are needed to compare the effectiveness of synthetic SeNPs and lactic acid bacteria enriched with sodium selenite as a biological source of SeNPs and probiotics. Future studies also need to evaluate the effect of dietary Se on methane emissions.


2021 ◽  
Vol 9 (11) ◽  
pp. 2200
Author(s):  
Wei-Kang Wang ◽  
Wen-Juan Li ◽  
Qi-Chao Wu ◽  
Yan-Lu Wang ◽  
Sheng-Li Li ◽  
...  

Cottonseed meal (CSM) is an important protein feed source for dairy cows. Its inclusion in ruminant diets is limited due to the presence of the highly toxic gossypol though rumen microorganisms are believed to be capable of gossypol degrading and transforming. The objective of the present study was to isolate the gossypol-degrading bacteria from the rumen contents and to assess its potential for gossypol degradation in vitro. A strain named Lactobacillus agilis WWK129 was anaerobically isolated from dairy cows after mixed rumen microorganisms were grown on a substrate with gossypol as the sole carbon source. Furthermore, the strain was applied at 5% inoculum concentration in vitro to continuously ferment CSM at 39 °C for five days, and it presented gossypol degradability as high as 83%. Meanwhile, the CSM contents of crude protein, essential amino acids increased significantly along with the increase of lactic acid yield (p < 0.01). Compared with the original CSM, the fermented CSM contents of neutral detergent fiber and acid detergent fiber was remarkably decreased after the anaerobic fermentation (p < 0.01). In brief, the Lactobacillus strain isolated from the rumen is not only of great importance for gossypol biodegradation of CSM, but it could also be used to further explore the role of rumen microorganisms in gossypol degradation by the ruminants.


Author(s):  
Yu Ye ◽  
Zi Yujie ◽  
Gao Huan ◽  
Fu Binlong ◽  
Leng Jing

Background: Presently, our understanding of the rumen of Gayals is still very shallow, which is recognized as the most effective and developed fiber degradation system in nature, with abundant microorganisms. Molecular biology technology is an effective means to study the microbial resources in the rumen. Methods: Rumen contents of 3 Gayals (Gayals, Bos frontalis; G) and 3 Yellow Cattle (Yunnan Yellow Cattle, Bos taurus; Y) were collected in this study. Rumen microbial proteins were extracted by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), then to analyze the bioinformatics of protein abundance was performed through the bovine rumen transcriptome database (gene.uniGeneset.fasta). Result: The results were as follows: the differences in protein abundance of Gayals rumen bacteria in Firmicutes, Actinobacteria, Ruminococcus and Olsenella were significantly higher than Yellow cattle (P less than 0.05) and the difference in protein abundance of Chytridiomycota and Batrachochytrium in rumen fungus of Gayals was significantly less than that of Yellow cattle. Enrichment analysis by KEGG metabolism pathway of differentially expressed proteins in rumen microorganisms was performed, Gayals have higher abundance of β-glucosidase and 6-phosphate-β-glucosidase than Yellow Cattle.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1015
Author(s):  
Huimin Zhong ◽  
Jiayan Zhou ◽  
Mohamed Abdelrahman ◽  
Hao Xu ◽  
Zian Wu ◽  
...  

The water buffalo (Bubalus bubalis) is known for its unique utilization of low-quality fibrous feeds and outstanding digestion performance, highlighting its role as an animal model in studying fiber fractions degradation. Among roughage, lignin attracted wide attention in ruminant nutrition studies, which affects animal digestibility. Therefore, the present study aims to investigate the functional relation between three lignin monomeric compositions of coniferyl alcohol (G), ρ-coumaryl alcohol (H) and sinapyl alcohol (S) and ruminal fiber degradation in water buffalo. Hence, three female water buffaloes (Nili-Ravi × Mediterranean, five years old, 480 ± 20 kg) were assigned for an in vivo study by utilizing the nylon-bag method, examining eight kinds of roughage. All the experimental roughage types were analyzed for the effective degradability (ED) of neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CEL) and hemicellulose (HC) fractions. Then, prediction models for the roughage fiber degradation were established based on the characteristics of lignin monomer content. The results showed that S, S/G and S/(G+S+H) were positively correlated with the ED of NDF, ADF, CEL and HC; H/S was negatively correlated. For the effective degradability of ADL (ADLD), S and S/(G+S+H) were positively correlated with it; H, H/G, H/S and H/(G+S+H) were negatively correlated. The model with the highest fitting degree was ADLD = 0.161 − 1.918 × H + 3.152 × S (R2 = 0.758, p < 0.01). These results indicated that the lignin monomer composition is closely related to the utilization rate of roughage fiber. S-type lignin monomer plays a vital role in the fiber degradation of roughage. The experiment found the effect of lignin monomer composition on the degradation of fiber fractions using buffalo as the experimental animal and constructed prediction models, providing a scientific basis for building a new technological method using lignin composition to evaluate buffalo roughage. Furthermore, the capacity of ADL degradation of buffalo was proved in this experiment. In order to further explore the ability of lignin degradation by the buffalo, the DNA of rumen microorganisms was extracted for sequencing. The top three composition of rumen microorganisms at the genus level were Prevotella_1, 226, Rikenellaceae_RC9_gut_group and Ruminococcaceae_UCG-011. Six strains with lignin degradation ability were screened from buffalo rumen contents. This experiment also revealed that the buffalos possess rumen microorganisms with lignin degradation potential.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 186-186
Author(s):  
Fan Yang ◽  
Jordan Embree ◽  
Sean Gilmore ◽  
Mallory Embree

Abstract The rumen microbiome functions as a synchronized entity that digests feed in order to provide nutrients for its host. High-concentrate diets destabilize the rumen microbiome by biasing the community towards microorganisms that readily ferment simple carbohydrates resulting in decreased pH, increased CO2, and an increased solvent concentration in the rumen content. This chemical shift interrupts rumen fermentation and can lead to the development of metabolic diseases that negatively impact animal performance. This study evaluated the benefit of a daily, in-feed microbial feed supplement (MFS; Magnius, Native Microbials Inc, San Diego, CA) containing three native rumen microbes (Chordicoccus ruminifurens ASCUSBF65, Prevotella albensis ASCUSBF41, and Succinivibrio dextrinosolvens ASCUSBF53) on commercial feedlot steer performance and rumen microbiome composition. The trial was conducted by HMS Veterinary Development in Reedley, CA using 200 steers in 20 pens over 109 days with a 2x2 factorial design (with and without step-up period x with and without MFS). The without step-up group was directly fed the finisher ration (94% concentrate, 0.95 Mcal/lb NEm), while the step-up group was adapted to the finisher ration over a period of 21 days. Rumen microbiome samples were collected via stomach tubing periodically throughout the trial. At the end of 109 days, the FCR of the animals receiving MFS were significantly lower than the control animals (7.67% improvement, P = 0.013) in the step-up group, although no significant differences were observed in ADG and DMI. No significant performance differences were observed in the group without a step-up (Table 1). The relationship between rumen pH, dissolved CO2, and the observed changes in the microbiome suggest a potential interplay between acetogenesis and methanogenesis where CO2 consuming bacteria may be important in improving rumen digestive health. Collectively, these results suggest that feeding native rumen microorganisms can improve rumen resilience and health of high-grain consuming cattle.


Sign in / Sign up

Export Citation Format

Share Document