Using lithium to probe sequential cation interactions with GAT1

2012 ◽  
Vol 302 (11) ◽  
pp. C1661-C1675 ◽  
Author(s):  
Anne-Kristine Meinild ◽  
Ian C. Forster

Li+ interacts with the Na+/Cl−-dependent GABA transporter, GAT1, under two conditions: in the absence of Na+ it induces a voltage-dependent leak current; in the presence of Na+ and GABA, Li+ stimulates GABA-induced steady-state currents. The amino acids directly involved in the interaction with the Na+ and Li+ ions at the so-called “ Na2” binding site have been identified, but how Li+ affects the kinetics of GABA cotransport has not been fully explored. We expressed GAT1 in Xenopus oocytes and applied the two-electrode voltage clamp and 22Na uptake assays to determine coupling ratios and steady-state and presteady-state kinetics under experimental conditions in which extracellular Na+ was partially substituted by Li+. Three novel findings are: 1) Li+ reduced the coupling ratio between Na+ and net charge translocated during GABA cotransport; 2) Li+ increased the apparent Na+ affinity without changing its voltage dependence; 3) Li+ altered the voltage dependence of presteady-state relaxations in the absence of GABA. We propose an ordered binding scheme for cotransport in which either a Na+ or Li+ ion can bind at the putative first cation binding site ( Na2). This is followed by the cooperative binding of the second Na+ ion at the second cation binding site ( Na1) and then binding of GABA. With Li+ bound to Na2, the second Na+ ion binds more readily GAT1, and despite a lower apparent GABA affinity, the translocation rate of the fully loaded carrier is not reduced. Numerical simulations using a nonrapid equilibrium model fully recapitulated our experimental findings.

FEBS Letters ◽  
1997 ◽  
Vol 416 (2) ◽  
pp. 167-170 ◽  
Author(s):  
X Fu ◽  
S Bressler ◽  
M Ottolenghi ◽  
T Eliash ◽  
N Friedman ◽  
...  

2010 ◽  
Vol 135 (5) ◽  
pp. 495-508 ◽  
Author(s):  
Harley T. Kurata ◽  
Emily A. Zhu ◽  
Colin G. Nichols

Polyamine block of inwardly rectifying potassium (Kir) channels underlies their steep voltage dependence observed in vivo. We have examined the potency, voltage dependence, and kinetics of spermine block in dimeric Kir2.1 constructs containing one nonreactive subunit and one cysteine-substituted subunit before and after modification by methanethiosulfonate (MTS) reagents. At position 169C (between the D172 “rectification controller” and the selectivity filter), modification by either 2-aminoethyl MTS (MTSEA) or 2-(trimethylammonium)ethyl MTS (MTSET) reduced the potency and voltage dependence of spermine block, consistent with this position overlapping the spermine binding site. At position 176C (between D172 and the M2 helix bundle crossing), modification by MTSEA also weakened spermine block. In contrast, MTSET modification of 176C dramatically slowed the kinetics of spermine unblock, with almost no effect on potency or voltage dependence. The data are consistent with MTSET modification of 176C introducing a localized barrier in the inner cavity, resulting in slower spermine entry into and exit from a “deep” binding site (likely between the D172 rectification controller and the selectivity filter), but leaving the spermine binding site mostly unaffected. These findings constrain the location of deep spermine binding that underlies steeply voltage-dependent block, and further suggest important chemical details of high affinity binding of spermine in Kir2.1 channels—the archetypal model of strong inward rectification.


1998 ◽  
Vol 75 (2) ◽  
pp. 777-784 ◽  
Author(s):  
Leonardo Pardo ◽  
Francesc Sepulcre ◽  
Josep Cladera ◽  
Mireia Duñach ◽  
Amílcar Labarta ◽  
...  

1994 ◽  
pp. 397-400
Author(s):  
E. Or ◽  
P. David ◽  
A. Shainskaya ◽  
R. Goldshleger ◽  
D. M. Tal ◽  
...  

2000 ◽  
Vol 116 (1) ◽  
pp. 47-60 ◽  
Author(s):  
R. Daniel Peluffo ◽  
José M. Argüello ◽  
Joshua R. Berlin

The roles of Ser775 and Glu779, two amino acids in the putative fifth transmembrane segment of the Na,K -ATPase α subunit, in determining the voltage and extracellular K + (K +o) dependence of enzyme-mediated ion transport, were examined in this study. HeLa cells expressing the α1 subunit of sheep Na,K -ATPase were voltage clamped via patch electrodes containing solutions with 115 mM Na+ (37°C). Na,K -pump current produced by the ouabain-resistant control enzyme (RD), containing amino acid substitutions Gln111Arg and Asn122Asp, displayed a membrane potential and K +o dependence similar to wild-type Na,K -ATPase during superfusion with 0 and 148 mM Na+-containing salt solutions. Additional substitution of alanine at Ser775 or Glu779 produced 155- and 15-fold increases, respectively, in the K +o concentration that half-maximally activated Na,K -pump current at 0 mV in extracellular Na+-free solutions. However, the voltage dependence of Na,K -pump current was unchanged in RD and alanine-substituted enzymes. Thus, large changes in apparent K +o affinity could be produced by mutations in the fifth transmembrane segment of the Na,K -ATPase with little effect on voltage-dependent properties of K + transport. One interpretation of these results is that protein structures responsible for the kinetics of K +o binding and/or occlusion may be distinct, at least in part, from those that are responsible for the voltage dependence of K +o binding to the Na,K -ATPase.


2012 ◽  
Vol 109 (45) ◽  
pp. 18401-18406 ◽  
Author(s):  
K. Abe ◽  
K. Tani ◽  
T. Friedrich ◽  
Y. Fujiyoshi

Sign in / Sign up

Export Citation Format

Share Document