Effects of NaCl, glucose, and aldose reductase inhibitors on cloning efficiency of renal medullary cells

1990 ◽  
Vol 258 (1) ◽  
pp. C156-C163 ◽  
Author(s):  
P. H. Yancey ◽  
M. B. Burg ◽  
S. M. Bagnasco

To analyze the effects of sorbitol accumulation on the survival and growth of epithelial cells from rabbit renal inner medulla, cloning efficiency (an index of cell viability) was measured at normal and high glucose and NaCl concentrations and when sorbitol accumulation was prevented by Tolrestat and Sorbinil, which inhibit aldose reductase. With PAP-HT25 cells grown to near confluence, high NaCl increases aldose reductase activity, causing enough rise in cell sorbitol concentration to balance most of the increased osmolality of the high extracellular NaCl. Inhibition of aldose reductase prevents both the increased enzyme activity and sorbitol accumulation in a dose-related manner. Paralleling this, colony-forming efficiency is not affected by the inhibitors at a normal NaCl concentration but is greatly reduced when extracellular NaCl is high. On the other hand, high glucose levels, as occur in diabetes, increase sorbitol content well above the concentration required for osmotic balance and inhibit colony-forming efficiency. Under those conditions, aldose reductase inhibitors lower cell sorbitol and reverse (at 300-350 mosmol/kgH2O) or reduce (at 500-550 mosmol/kgH2O) the decrease in colony-forming efficiency caused by high glucose. Thus sorbitol accumulation is necessary for osmoregulation when induced by high osmolality but is harmful when induced by high glucose.

1991 ◽  
Vol 260 (4) ◽  
pp. F494-F497 ◽  
Author(s):  
T. Moriyama ◽  
A. Garcia-Perez ◽  
A. D. Olson ◽  
M. B. Burg

Renal medullary cells are normally exposed to a variably high extracellular NaCl concentration. They compensate by accumulating large amounts of organic osmolytes, including sorbitol and betaine. The sorbitol is synthesized from glucose, catalyzed by aldose reductase. Previously, inhibition of aldose reductase activity was noted to greatly reduce renal medullary cell survival and growth (measured by cloning efficiency) in tissue cultures of renal medullary cells in hypertonic medium. In contrast, inhibition of aldose reductase and renal medullary sorbitol accumulation is not associated with kidney damage in vivo. In the present experiments we find that addition of betaine to the medium, and its resultant uptake by the cells, largely replaces the decrease in sorbitol caused by aldose reductase inhibitors and restores the cloning efficiency. We presume that in vivo uptake of betaine by renal medullary cells similarly protects them from harm when aldose reductase inhibitors lower sorbitol. The results also demonstrate that one organic osmolyte can substitute for another in protecting cells from hypertonicity, consistent with the compatible osmolytes hypothesis.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2867
Author(s):  
Lucia Kovacikova ◽  
Marta Soltesova Prnova ◽  
Magdalena Majekova ◽  
Andrej Bohac ◽  
Cimen Karasu ◽  
...  

Aldose reductase (AR, ALR2), the first enzyme of the polyol pathway, is implicated in the pathophysiology of diabetic complications. Aldose reductase inhibitors (ARIs) thus present a promising therapeutic approach to treat a wide array of diabetic complications. Moreover, a therapeutic potential of ARIs in the treatment of chronic inflammation-related pathologies and several genetic metabolic disorders has been recently indicated. Substituted indoles are an interesting group of compounds with a plethora of biological activities. This article reviews a series of indole-based bifunctional aldose reductase inhibitors/antioxidants (ARIs/AOs) developed during recent years. Experimental results obtained in in vitro, ex vivo, and in vivo models of diabetic complications are presented. Structure–activity relationships with respect to carboxymethyl pharmacophore regioisomerization and core scaffold modification are discussed along with the criteria of ‘drug-likeness”. Novel promising structures of putative multifunctional ARIs/AOs are designed.


2012 ◽  
Vol 12 (2) ◽  
pp. 157-161 ◽  
Author(s):  
Arumugam Madeswaran ◽  
Muthuswamy Umamaheswari ◽  
Kuppusamy Asokkumar ◽  
Thirumalaisamy Sivashanmugam ◽  
Varadharajan Subhadradevi ◽  
...  

1995 ◽  
Vol 18 (2) ◽  
pp. 65-68 ◽  
Author(s):  
Kuk Hyun Shin ◽  
Sam Sik Kang ◽  
Eun Ah Seo ◽  
Seung Won Shin

ChemInform ◽  
2010 ◽  
Vol 27 (17) ◽  
pp. no-no
Author(s):  
K. HAYASHI ◽  
M. DOMBOU ◽  
M. SEKIYA ◽  
H. NAKAJIMA ◽  
T. FUJITA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document