Forskolin-induced HCO3- current across apical membrane of the frog corneal epithelium

1990 ◽  
Vol 259 (2) ◽  
pp. C215-C223 ◽  
Author(s):  
O. A. Candia

Forskolin (and other Cl- secretagogues) does not affect the very small Na(+)-originated short-circuit current (Isc) across frog corneal epithelium bathed in Cl- free solutions. However, forskolin in combination with increased PCO2 bubbling of the solutions (5-20% CO2) stimulated Isc proportionally to PCO2 to a maximum of approximately 8 microA/cm2. This current could be eliminated and reinstated by sequentially changing the gas composition of the bubbling to 100% air and 20% CO2-80% air. The same effects were observed when PCO2 changes were limited to the apical-side solution. Stroma-to-tear HCO3- movement was deemed unlikely, since the increase in Isc was observed with a HCO3(-)-free solution on the stromal side and CO2 gassing limited to the tear side. From the effects of ouabain and tryptamine, at least 80% of the Isc across the basolateral membrane can be accounted for by the Na+ pump current plus K+ movement from cell to bath. Methazolamide also inhibited Isc. Current across the apical membrane cannot be attributed to an electronegative Na(+)-HCO3- symport given the insensitivity of Isc to a disulfonic stilbene and the fact that stroma-to-tear Na+ fluxes did not increase on stimulation of Isc. The tear-to-stroma Na+ flux also remained unaltered, negating an increased apical bath-to-cell Na+ flow. The forskolin-20% CO2 manipulation produced a depolarization of the intracellular potential, a reduction in the apical-to-basolateral resistance ratio, and a decrease in transepithelial resistance.(ABSTRACT TRUNCATED AT 250 WORDS)

2001 ◽  
Vol 281 (2) ◽  
pp. C633-C648 ◽  
Author(s):  
Sasha Blaug ◽  
Kevin Hybiske ◽  
Jonathan Cohn ◽  
Gary L. Firestone ◽  
Terry E. Machen ◽  
...  

Mammary epithelial 31EG4 cells (MEC) were grown as monolayers on filters to analyze the apical membrane mechanisms that help mediate ion and fluid transport across the epithelium. RT-PCR showed the presence of cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC) message, and immunomicroscopy showed apical membrane staining for both proteins. CFTR was also localized to the apical membrane of native human mammary duct epithelium. In control conditions, mean values of transepithelial potential (apical-side negative) and resistance ( R T) are −5.9 mV and 829 Ω · cm2, respectively. The apical membrane potential ( V A) is −40.7 mV, and the mean ratio of apical to basolateral membrane resistance ( R A/ R B) is 2.8. Apical amiloride hyperpolarized V A by 19.7 mV and tripled R A/ R B. A cAMP-elevating cocktail depolarized V A by 17.6 mV, decreased R A/ R B by 60%, increased short-circuit current by 6 μA/cm2, decreased R T by 155 Ω · cm2, and largely eliminated responses to amiloride. Whole cell patch-clamp measurements demonstrated amiloride-inhibited Na+ currents [linear current-voltage ( I-V) relation] and forskolin-stimulated Cl−currents (linear I-V relation). A capacitance probe method showed that in the control state, MEC monolayers either absorbed or secreted fluid (2–4 μl · cm−2 · h−1). Fluid secretion was stimulated either by activating CFTR (cAMP) or blocking ENaC (amiloride). These data plus equivalent circuit analysis showed that 1) fluid absorption across MEC is mediated by Na+ transport via apical membrane ENaC, and fluid secretion is mediated, in part, by Cl− transport via apical CFTR; 2) in both cases, appropriate counterions move through tight junctions to maintain electroneutrality; and 3) interactions among CFTR, ENaC, and tight junctions allow MEC to either absorb or secrete fluid and, in situ, may help control luminal [Na+] and [Cl−].


1988 ◽  
Vol 254 (6) ◽  
pp. C816-C821 ◽  
Author(s):  
W. Van Driessche ◽  
D. Erlij

We incubated toad urinary bladders with Na+-free, isotonic K+ solutions on the apical side and increased the cationic conductance of the apical membrane with nystatin (150 U/ml). Under these conditions, the short-circuit current is mostly carried by K+ flowing from mucosa to serosa. Impedance measurements showed that in nystatin-treated preparations, the electrical behavior of the tissue is dominated by the basolateral membrane properties. Oxytocin (0.1 U/ml) produced an increase of the current and the conductance of the basolateral membrane. Both the resting and the oxytocin-stimulated current were rapidly and reversibly blocked by serosal Ba2+. Addition of the adenosine 3',5'-cyclic monophosphate (cAMP) analogue [8-(4-chloropheylthio)-cAMP] to the basolateral solution mimicked the effects of oxytocin. These results show that oxytocin and cAMP stimulate a potassium conductance in the basolateral membrane and that the stimulation is not related to an increase in sodium entry through the apical membrane. Addition of ouabain (10(-3) M) to the serosal solution did not modify the stimulation by oxytocin, indicating that the activated pathway is not linked to the rate of turnover of the Na+ pump.


1997 ◽  
Vol 272 (3) ◽  
pp. C931-C936 ◽  
Author(s):  
H. Bouritius ◽  
J. A. Groot

We studied the effects of stimulation of the apical adenosine receptor on ion transport by HT29cl.19A cells with the conventional microelectrode technique. Adenosine (100 microM) caused an increase in the transepithelial potential (3.6 +/- 0.4 mV) and equivalent short-circuit current (I(sc), 21 +/- 3 microA/cm2), a transient depolarization of the apical membrane potential (14 +/- 2 mV), and a decrease in the apical membrane resistance. The increase in I(sc) was additive to the effect of forskolin or basolateral addition of a maximal concentration of adenosine. Bumetanide, applied after adenosine, caused a further depolarization (7 +/- 2 mV) concomitant with a decrease in I(sc) (-13 +/- 2 microA/cm2) and an increase in the basolateral membrane resistance. Substitution of Cl- with gluconate or Na+ with N-methylglucamine reduced the response to adenosine by >60%. The response was also reduced by a low concentration of amiloride. We conclude that stimulation of the apical adenosine receptor activated a cation conductance in the apical membrane.


1986 ◽  
Vol 251 (3) ◽  
pp. C448-C454 ◽  
Author(s):  
O. A. Candia ◽  
L. R. Grillone ◽  
T. C. Chu

The effects of forskolin on the electrophysiological parameters of the isolated corneal epithelium from bullfrog (Rana catesbeiana) were investigated. Forskolin stimulated the short-circuit current (SCC) and transepithelial potential difference (PDt), while reducing the transepithelial resistance. These effects were absent in Cl- -free bathing solutions. Furosemide, added either before or after forskolin, completely blocked the effects. Epinephrine and A23187, added after forskolin, produced only a small additional stimulation of the SCC. Propranolol neither blocked nor reduced the effect of forskolin. Forskolin increased the stroma to tear 36Cl flux by 61% and the tear to stroma 36Cl flux by 64%. Intracellular recordings showed that forskolin depolarized the potential difference across the apical membrane and reduced the apical/basolateral resistance ratio. Intracellular recordings in the isolated rabbit epithelium showed the same effects by forskolin except that there was only a brief stimulation of PDt, after which it stabilized slightly below the control level. These results are consistent with an increase in apical membrane permeability similar to that produced by adenosine 3',5'-cyclic monophosphate, epinephrine, and the Ca2+ ionophore A23187.


1991 ◽  
Vol 260 (2) ◽  
pp. C234-C241 ◽  
Author(s):  
S. Das ◽  
M. Garepapaghi ◽  
L. G. Palmer

The effects of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) on apical membrane cation conductances in the toad urinary bladder were investigated. 8-BrcGMP (1 mM) added to the serosal solution increased the amiloride-sensitive short-circuit current (INa) after a delay of 5 min to a steady-state value 1.8 times that of controls achieved after 30 min. Similar effects were seen when the bladders were bathed on the serosal side with a normal NaCl Ringer solution and with a high-K sucrose solution to depolarize the basolateral membrane. Under the latter conditions, the amiloride-sensitive transepithelial conductance increased in parallel with the short-circuit current, indicating stimulation of apical membrane Na channels. The threshold concentration for observing the stimulation of INa was 100 microM, 10-100 times larger than the concentration of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) required to elicit an increase in INa. Currents through an outwardly rectifying Ca-sensitive cation conductance (Iout) were also increased by 1.8-fold relative to controls. This stimulatory effect occurred after a delay of 15 min and reached maximal levels 90-120 min after addition of the nucleotide. The effects of cGMP on INa were not additive with those of 8-BrcAMP or with antidiuretic hormone, an agent known to act by increasing cAMP within the cell. Addition of 1 mM 3-isobutyl-1-methylxanthine to the serosal side of the bladders stimulated INa by 1.3-fold and Iout by 2.4-fold. In both cases, subsequent addition of cGMP produced no further activation of either conductance.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 255 (6) ◽  
pp. C724-C730 ◽  
Author(s):  
T. C. Chu ◽  
O. A. Candia

Norepinephrine, 10(-6) M, reduced Cl- transport by 26% in 75% of isolated frog corneal epithelia. This inhibition was not previously reported. Since beta-adrenergic agonists are known to only stimulate Cl- transport, the action of specific alpha 1- and alpha 2-agonists on Cl- transport and electrical parameters was investigated. Phenylephrine, an alpha 1-agonist always stimulated the Cl(-)-dependent short-circuit current (Isc), but less than the beta-agonists. UK-14,304-18 (UK), a selective alpha 2-agonist, reduced both the Isc (by 31% at 10(-5) M) and the stroma-to-tear unidirectional Cl- flux. UK hyperpolarized the apical membrane potential difference and increased the transepithelial resistance and apical-to-basolateral resistance ratio. UK reduced forskolin-stimulated adenylate cyclase activity by 36%. The electrophysiological effects of UK are consistent with a reduction of the Cl- permeability at the apical membrane. Pretreatment with UK sensitized the tissue for a greater effect by forskolin. Results show that the frog corneal epithelium also possesses alpha 1- and alpha 2-receptors, the latter negatively coupled to the adenylate cyclase system. Cl- transport is thus regulated by an interaction between the positive effects of beta- and alpha 1-stimulation and the negative influence of alpha 2-stimulation.


1985 ◽  
Vol 249 (4) ◽  
pp. F546-F552 ◽  
Author(s):  
D. L. Stetson ◽  
R. Beauwens ◽  
J. Palmisano ◽  
P. P. Mitchell ◽  
P. R. Steinmetz

To define the transport pathway for HCO-3 secretion (JHCO3) across the apical and basolateral membranes of turtle bladder, we examined the effects of cAMP, isobutylmethylxanthine (IBMX), the Cl- channel blocker 9-anthroic acid (9-AA), and the disulfonic stilbene DIDS (4,4'-diisothiocyanostilbene-2,2'-sulfonic acid) on the electroneutral and electrogenic components of JHCO3. Total JHCO3 was measured by pH stat titration of the mucosal compartment after Na+ absorption and H+ secretion were abolished by ouabain and a delta pH, respectively. Addition of cAMP or IBMX increased total JHCO3 and induced a short-circuit current (ISC), accounting for a large part of JHCO3; net Cl- absorption was reduced. Mucosal 9-AA inhibited the IBMX-induced electrogenic component of JHCO3, whereas mucosal DIDS inhibited the electroneutral component and acetazolamide reduced both. We suggest that HCO-3 is generated within the cell by a Na-independent primary active acid-base transport at the basolateral membrane (H+ extrusion into the serosal compartment). Cellular HCO-3 accumulation drives JHCO3 via a Cl-HCO3 exchanger at the luminal membrane. IBMX and cAMP activate a 9-AA-sensitive anion conductance parallel to the exchanger. The apparent reversal of the transport elements between the two cell membranes (compared with H+-secreting cells) led to an ultrastructural examination of the carbonic anhydrase-rich cells.


1986 ◽  
Vol 250 (5) ◽  
pp. F781-F784 ◽  
Author(s):  
S. Tsuboi ◽  
R. Manabe ◽  
S. Iizuka

Transport of Na and Cl across the isolated dog retinal pigment epithelium (RPE) choroid was investigated. Under the short-circuit condition, a net Na flux was observed from choroid to retina and a net Cl flux was determined in the opposite direction. The current created by the net flux of these two ions was larger than the short-circuit current (SCC). Addition of 10(-5) M ouabain to the apical side inhibited net fluxes of both Na and Cl, whereas it reduced the SCC 84%. Addition of 10(-4) M furosemide to the apical side inhibited net Cl flux but had no effect on the net Na transport. The 10(-4) M furosemide reduced the SCC 38%. These drugs had no effect when applied to the basal side. Thus the transport of both Na and Cl depends on the Na-K-ATPase in the apical membrane of the dog RPE. A furosemide-sensitive neutral carrier at the apical membrane is suggested for the transport of Cl. Replacement of HCO3 with SO4 in the bathing solution caused an increase in the SCC, indicating the choroid-to-retina movement of HCO3 across the short-circuited dog RPE choroid.


1987 ◽  
Vol 89 (4) ◽  
pp. 563-580 ◽  
Author(s):  
J R Demarest ◽  
A L Finn

Experimental modulation of the apical membrane Na+ conductance or basolateral membrane Na+-K+ pump activity has been shown to result in parallel changes in the basolateral K+ conductance in a number of epithelia. To determine whether modulation of the basolateral K+ conductance would result in parallel changes in apical Na+ conductance and basolateral pump activity, Necturus urinary bladders stripped of serosal muscle and connective tissue were impaled through their basolateral membranes with microelectrodes in experiments that allowed rapid serosal solution changes. Exposure of the basolateral membrane to the K+ channel blockers Ba2+ (0.5 mM/liter), Cs+ (10 mM/liter), or Rb+ (10 mM/liter) increased the basolateral resistance (Rb) by greater than 75% in each case. The increases in Rb were accompanied simultaneously by significant increases in apical resistance (Ra) of greater than 20% and decreases in transepithelial Na+ transport. The increases in Ra, measured as slope resistances, cannot be attributed to nonlinearity of the I-V relationship of the apical membrane, since the measured cell membrane potentials with the K+ channel blockers present were not significantly different from those resulting from increasing serosal K+, a maneuver that did not affect Ra. Thus, blocking the K+ conductance causes a reduction in net Na+ transport by reducing K+ exit from the cell and simultaneously reducing Na+ entry into the cell. Close correlations between the calculated short-circuit current and the apical and basolateral conductances were preserved after the basolateral K+ conductance pathways had been blocked. Thus, the interaction between the basolateral and apical conductances revealed by blocking the basolateral K+ channels is part of a network of feedback relationships that normally serves to maintain cellular homeostasis during changes in the rate of transepithelial Na+ transport.


2006 ◽  
Vol 291 (2) ◽  
pp. G246-G252 ◽  
Author(s):  
S. Leonhard-Marek ◽  
G. Breves ◽  
R. Busche

Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl−/HCO3− and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl− conductance. We investigated whether Cl− has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current ( Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5- N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl− stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 ± 0.03 in a low-Cl− solution. It was increased by 0.21 pH units when luminal Cl− was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl− depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl− solutions. The results show that luminal Cl− can increase the microclimate pH via apical Cl−/HCO3− or Cl−/OH− exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl− effects on Na+ absorption. The data further show that the Cl− conductance of rumen epithelium must be located at the basolateral membrane.


Sign in / Sign up

Export Citation Format

Share Document