CPX, a selective A1-adenosine-receptor antagonist, regulates intracellular pH in cystic fibrosis cells

1995 ◽  
Vol 269 (1) ◽  
pp. C226-C233 ◽  
Author(s):  
V. Casavola ◽  
R. J. Turner ◽  
C. Guay-Broder ◽  
K. A. Jacobson ◽  
O. Eidelman ◽  
...  

The selective A1-adenosine-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPX), has been reported to activate Cl- efflux from cystic fibrosis cells, such as pancreatic CFPAC-1 and lung IB3 cells bearing the cystic fibrosis transmembrane regulator(delta F508) mutation, but has little effect on the same process in cells repaired by transfection with wild-type cystic fibrosis transmembrane regulator (O. Eidelman, C. Guay-Broder, P. J. M. van Galen, K. A. Jacobson, C. Fox, R. J. Turner, Z. I. Cabantchik, and H. B. Pollard. Proc. Natl. Acad. Sci. USA 89: 5562-5566, 1992). We report here that CPX downregulates Na+/H+ exchange activity in CFPAC-1 cells but has a much smaller effect on cells repaired with the wild-type gene. CPX also mildly decreases resting intracellular pH. In CFPAC-1 cells, this downregulation is dependent on the presence of adenosine, since pretreatment of the cells with adenosine deaminase blocks the CPX effect. We also show that, by contrast, CPX action on these cells does not lead to alterations in intracellular free Ca2+ concentration. We conclude that CPX affects pH regulation in CFPAC-1 cells, probably by antagonizing the tonic action of endogenous adenosine.

ChemInform ◽  
2003 ◽  
Vol 34 (47) ◽  
Author(s):  
HeXi Chang ◽  
Carol Ensinger ◽  
Robert D. McCargar ◽  
Bruno M. Vittimberga

2005 ◽  
Vol 103 (5) ◽  
pp. 1060-1065 ◽  
Author(s):  
Xinhui Li ◽  
James C. Eisenach

Background A1 adenosine receptor activation reduces hypersensitivity in animal models of chronic pain, but intrathecal adenosine does not produce analgesia to acute noxious stimuli. Here, the authors test whether increased inhibition by adenosine of glutamate release from afferents after injury accounts for this difference. Methods Synaptosomes were prepared from the dorsal half of the lumbar spinal cord of normal rats or those with spinal nerve ligation. Glutamate release evoked by the TRPV-1 receptor agonist, capsaicin, was measured. Adenosine with or without adenosine A1 and A2 receptor antagonists was applied to determine the efficacy and mechanism of adenosine to reduce capsaicin-evoked glutamate release. Results Capsaicin produced a concentration-dependent glutamate release similarly in normal and nerve-injured rats. Capsaicin-evoked glutamate release was inhibited by adenosine or R-PIA (R-N6-(2- phenylisopropyl)-adenosine) in a concentration-dependent manner, with a threshold of 10 nm in both normal and nerve-ligated synaptosomes. Blockade of capsaicin-evoked glutamate release by adenosine was reversed similarly in synaptosomes from normal and spinal nerve-ligated animals by an A1 adenosine receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) but not by an A2 adenosine receptor antagonist DMPX (3'7-dimethyl-1-proparaglyxanthine). Capsaicin-evoked glutamate release, as well as its inhibition by adenosine, did not differ between synaptosomes prepared from tissue ipsilateral and contralateral to spinal nerve ligation. Conclusion These observations confirm previous neurophysiologic studies that presynaptic adenosine A1 receptor activation inhibits glutamate release from primary afferents. This effect is unaltered after peripheral nerve injury and thereby is unlikely to account for the enhanced analgesic efficacy of intrathecal adenosine in this setting.


Sign in / Sign up

Export Citation Format

Share Document