cAMP-dependent sulfate secretion by the rabbit distal colon: a comparison with electrogenic chloride secretion

1997 ◽  
Vol 273 (1) ◽  
pp. C148-C160 ◽  
Author(s):  
R. W. Freel ◽  
M. Hatch ◽  
N. D. Vaziri

The ability of a Cl-secreting epithelium to support net secretion of an anion other than a halide was investigated with 35SO4 flux measurements across the isolated, short-circuited rabbit distal colon. In most experiments, 36Cl fluxes were simultaneously measured to validate the secretory capacity of the tissues. Serosal addition of dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP, 0.5 mM) stimulated a sustained net secretion of SO4 (about -3.0 nmol.cm-2.h-1 from a 0.20 mM solution) via an increase in the serosal-to-mucosal unidirectional flux, whereas Ca ionophore A-23187 (1 microM, serosal) produced a more transient stimulation of SO4 and Cl secretion. Net adenosine 3',5'-cyclic monophosphate (cAMP)-dependent SO4 and Cl secretion were strongly voltage sensitive, principally through the potential dependence of the serosal-to-mucosal fluxes, indicating an electrogenic transport process. Symmetrical replacement of either Na, K, or Cl inhibited cAMP-dependent SO4 secretion, whereas HCO3-free buffers had no effect on SO4 secretion. Serosal bumetanide (50 microM) or furosemide (100 microM) reduced DBcAMP-stimulated SO4 and Cl secretion, whereas serosal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid or 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (50 microM) blocked DBcAMP-induced SO4 secretion while enhancing net Cl secretion and short-circuit current. Mucosal 5-nitro-2-(3-phenylpropylamino)benzoic acid partially inhibited SO4 secretion and completely inhibited Cl secretion. It is concluded that secretagogue-stimulated SO4 secretion, like Cl secretion, may be an electrogenic process mediated by diffusive efflux through an apical anion conductance. Cellular accumulation of SO4 across the basolateral membrane appears to be achieved by a mechanism that is distinct from that employed by Cl.

1993 ◽  
Vol 264 (2) ◽  
pp. G252-G260 ◽  
Author(s):  
V. Calderaro ◽  
E. Chiosi ◽  
R. Greco ◽  
A. M. Spina ◽  
A. Giovane ◽  
...  

Effects of Ca2+ on adenosine 3',5'-cyclic monophosphate (cAMP)-mediated Cl- secretion were investigated in intact mucosa and isolated crypt cells of rabbit descending colon. Addition of 10 microM prostaglandin (PG)E2 or forskolin to tissues incubated in Ca(2+)-free medium increased the size of short-circuit current (Isc) and Cl- secretion as estimated by unidirectional 36Cl flux measurements (net flux = -2.31 +/- 0.24 vs. -1.22 +/- 0.10 mueq.h-1.cm-2, n = 4, P < 0.001). Addition of 10 microM PGE2 to tissues incubated in 1.2 mM Ca2+ Ringer induced a 7-fold increase in mean cAMP level, whereas it produced an 11-fold increase in tissues exposed to Ca(2+)-free medium. Membrane preparations from whole mucosa incubated in Ca(2+)-free medium displayed a cyclic nucleotide phosphodiesterase activity significantly lower than controls (18.76 +/- 0.54 vs. 31.20 +/- 0.39 pmol cAMP. mg protein-1.min-1, means +/- SE, n = 4, P < 0.001). Ca2+ removal also affected adenylate cyclase (AC) responsiveness to agonists; AC activity increased in controls by 54 and 226% after stimulation with 10 microM PGE2 and forskolin, respectively, but it increased more (77 and 325%, respectively) after incubation in Ca(2+)-free solutions.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 257 (1) ◽  
pp. C45-C51 ◽  
Author(s):  
S. M. O'Grady ◽  
P. J. Wolters

Porcine gallbladder, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasma-like Ringer solution generates a serosal positive transepithelial potential of 4-7 mV and a short-circuit current (Isc) of 50-120 microA/cm2. Substitution of Cl with gluconate or HCO3 with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) results in a 50% decrease in Isc. Treatment with 1 mM amiloride (mucosal side) or 0.1 mM acetazolamide (both sides) causes 25-27% inhibition of the Isc. Mucosal addition of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibits the Isc by 17%. Serosal addition of 0.1 mM bumetanide inhibits the Isc by 28%. Amiloride (1 mM) inhibits the net transepithelial fluxes of Na and Cl by 55 and 41%, respectively. Substitution of Cl with gluconate inhibits the net Na flux by 50%, whereas substitution of HCO3 with HEPES inhibits 85-90% of the net Na flux and changes Cl absorption to net secretion. Based on these results, it is hypothesized that Na and Cl transport across the apical membrane is mediated by two pathways, Na-H/Cl-HCO3 exchange and Na-HCO3 cotransport. Partial recycling of Cl and HCO3 presumably occurs through a Cl conductive pathway and Cl-HCO3 exchange, respectively, in the apical membrane. This results in net Na absorption, which accounts for most of the Isc observed under basal conditions. The effect of bumetanide on the basolateral membrane and the fact that Cl secretion occurs when HCO3 is absent suggests that Cl secretion involves a basolateral NaCl or Na-K-Cl cotransport system arranged in series with a Cl conductive pathway in the apical membrane.


1995 ◽  
Vol 269 (4) ◽  
pp. C929-C942 ◽  
Author(s):  
D. R. Halm ◽  
S. T. Halm ◽  
D. R. DiBona ◽  
R. A. Frizzell ◽  
R. D. Johnson

Stimulation of Cl secretion by prostaglandin E2 (PGE2) was measured as the short-circuit current (Isc) across isolated epithelium of the rabbit distal colon. Cellular morphology of columnar and goblet cells during secretion was monitored using light and electron microscopy. Stimulation by PGE2 altered epithelial cell morphology only by a reduction of vacuolar space in the apical pole of crypt columnar cells, consistent with release of vacuole contents. Imaging of isolated crypts using differential interference microscopy confirmed the release of material from columnar cells during the onset of secretion. Inhibition of Cl secretion with the loop diuretic bumetanide did not block vacuole release. The actin filament-disrupting agent, cytochalasin, reduced the PGE2-stimulated Isc by 40% and blocked emptying of the vacuolar space. These electrical and morphological results indicate that the process of active ion secretion is associated with release of the macromolecular contents from apical vacuoles through a mechanism involving the cytoskeleton. In addition, this relationship supports the concept that vacuolated columnar cells of the crypts of Lieberkuhn are the cell type that secretes Cl in response to PGE2.


1994 ◽  
Vol 267 (4) ◽  
pp. R1026-R1033 ◽  
Author(s):  
M. D. DuVall ◽  
S. M. O'Grady

Intact epithelium from the porcine distal colon was stripped of serosal muscle and mounted in Ussing chambers to investigate the regulation of Na, Cl, and K transport by guanosine 3',5'-cyclic monophosphate (cGMP) and elevations in intracellular [Ca2+]. Under voltage-clamped conditions cGMP (250 microM) produced an increase in tissue short-circuit current (Isc) that reached a maximal value within 10-20 min and remained elevated > 40 min. This response was associated with an inhibition of NaCl absorption and stimulation of Cl and K secretion. In the absence of Cl the Isc also slowly increased but returned to baseline values within 20 min. Bicarbonate removal from both serosal and mucosal solutions or serosal bumetanide (20 microM) reduced the effect of cGMP on Isc by approximately 40%. When performed simultaneously, these conditions reduced the cGMP response by approximately 60%. Transepithelial Na and Cl flux measurements indicated that serosal bumetanide blocked increased Cl secretion without effecting changes in NaCl absorption. In contrast, mucosal amiloride blocked the effects of cGMP on NaCl absorption but not Cl secretion. The cGMP Isc response was potentiated in the presence of 1 mM, but not 10 microM, amiloride. Moreover, 1 mM amiloride inhibited Isc under control conditions but was ineffective in the presence of cGMP. The Ca2+ ionophore ionomycin (3 microM) produced a transient increase in the Isc that was also associated with a decrease in transepithelial NaCl absorption and an increase in Cl and K secretion. In contrast to cGMP, the ionomycin Isc response was eliminated after Cl removal from the bath.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 261 (5) ◽  
pp. G833-G840 ◽  
Author(s):  
H. J. Cooke ◽  
Y. Z. Wang ◽  
T. Frieling ◽  
J. D. Wood

The effects of 5-hydroxytryptamine (5-HT) on epithelial short-circuit current (Isc) were determined and related to the 5-HT effects on electrical and synaptic behavior of neurons in the submucosal plexus of the guinea pig colon. 5-HT evoked a biphasic increase in Isc that was reduced by bumetanide, Cl(-)-free solutions, atropine, and mecamylamine and abolished by tetrodotoxin. The 5-HT response was mimicked by 2-methyl-5-HT, but not by 5-hydroxyindalpine, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, and 5-methoxytryptamine (5-MeOT). ICS 205-930 suppressed the 5-HT response. Electrical field stimulation of submucosal neurons evoked an increase in Isc indicative of Cl- secretion that was reduced by 5-MeOT and enhanced by 2-methyl-5-HT. Application of 5-HT to submucosal neurons by micropressure ejection resulted in membrane depolarization, augmented excitability, and repetitive spike discharge. The depolarization was biphasic, consisting of rapidly and slowly activating components. The rapidly activating component was suppressed by ICS 205-930. Fast excitatory postsynaptic potentials evoked by electrical stimulation of interganglionic connectives were suppressed by 5-HT and 5-MeOT. These results suggest that 5-HT activates 5-HT3 receptors, which mediate fast excitatory responses in submucosal neurons, leading to release of acetylcholine at nicotinic and muscarinic synapses and stimulation of Cl- secretion. Presynaptic inhibition suppresses acetylcholine release and results in attenuation of neurally evoked Cl- secretion.


1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


2005 ◽  
Vol 288 (5) ◽  
pp. G956-G963 ◽  
Author(s):  
Kazi Mirajul Hoque ◽  
Vazhaikkurichi M. Rajendran ◽  
Henry J. Binder

Zn, an essential micronutrient and second most abundant trace element in cell and tissues, reduces stool output when administered to children with acute diarrhea. The mechanism by which Zn improves diarrhea is not known but could result from stimulating Na absorption and/or inhibiting anion secretion. The aim of this study was to investigate the direct effect of Zn on intestinal epithelial ion absorption and secretion. Rat ileum was partially stripped of serosal and muscle layers, and the mucosa was mounted in lucite chambers. Potential difference and short-circuit current were measured by conventional current-voltage clamp method.86Rb efflux and uptake were assessed for serosal K channel and Na-K-2Cl cotransport activity, respectively. Efflux experiments were performed in isolated cells preloaded with86Rb in the presence of ouabain and bumetanide, whereas uptake experiments were performed in low-Cl isotonic buffer containing Ba and ouabain. Neither mucosal nor serosal Zn affected glucose-stimulated Na absorption. In contrast, forskolin-induced Cl secretion was markedly reduced by serosal but not mucosal addition of Zn. Zn also substantially reversed the increase in Cl secretion induced by 8-bromoadenosine 3′,5′-cyclic monophosphate (8-BrcAMP) with half-maximal inhibitory concentration of 0.43 mM. In contrast, serosal Zn did not alter Cl secretion stimulated by carbachol, a Ca-dependent agonist. Zn inhibited 8-BrcAMP-stimulated86Rb efflux but not carbachol-stimulated86Rb efflux. Zn had no effect on bumetanide-sensitive86Rb uptake, Na-K-ATPase, or CFTR. We conclude from these studies that Zn inhibits cAMP-induced Cl secretion by blocking basolateral membrane K channels.


1990 ◽  
Vol 259 (6) ◽  
pp. L459-L467 ◽  
Author(s):  
G. J. Tessier ◽  
T. R. Traynor ◽  
M. S. Kannan ◽  
S. M. O3'Grady

Equine tracheal epithelium, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasmalike Ringer solution generates a serosa-positive transepithelial potential of 10–22 mV and a short-circuit current (Isc) of 70–200 microA/cm2. Mucosal amiloride (10 microM) causes a 40–60% decrease in Isc and inhibits the net transepithelial Na flux by 95%. Substitution of Cl with gluconate resulted in a 30% decrease in basal Isc. Bicarbonate substitution with 20 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid decreased the Isc by 21%. The Cl-dependent Isc was inhibited by serosal addition of 1 mM amiloride. Bicarbonate replacement or serosal amiloride (1 mM) inhibits the net Cl flux by 72 and 69%, respectively. Bicarbonate replacement significantly reduces the effects of serosal amiloride (1 mM) on Isc, indicating its effect is HCO3 dependent. Addition of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP; 100 microM) causes a 40% increase in Isc. This effect is inhibited by subsequent addition of 10 microM serosal bumetanide. Bumetanide (10 microM) reduces net Cl secretion following stimulation with 8-BrcAMP (100 microM). Serosal addition of BaCl2 (1 mM) causes a reduction in Isc equal to that following Cl replacement in the presence or absence of 100 microM cAMP. These results suggest that 1) Na absorption depends on amiloride-inhibitable Na channels in the apical membrane, 2) Cl influx across the basolateral membrane occurs by both a Na-H/Cl-HCO3 parallel exchange mechanism under basal conditions and by a bumetanide-sensitive Na-(K?)-Cl cotransport system under cAMP-stimulated conditions, and 3) basal and cAMP-stimulated Cl secretion depends on Ba-sensitive K channels in the basolateral membrane.


1995 ◽  
Vol 269 (5) ◽  
pp. L561-L566 ◽  
Author(s):  
B. Q. Shen ◽  
R. J. Mrsny ◽  
W. E. Finkbeiner ◽  
J. H. Widdicombe

We have tested two hypotheses: 1) the cystic fibrosis transmembrane conductance regulator (CFTR) represents the predominant Cl conductance in the apical membrane of human tracheal epithelium, and 2) CFTR in this tissue is close to maximally activated under baseline conditions. In support of the first hypothesis, we found 1) when the level of differentiation of cultures was varied by varying the culture conditions, there was a significant positive correlation between the levels of CFTR and the magnitude of mediator-induced Cl secretion. 2) Amiloride-insensitive baseline short-circuit current (Isc) and mediator-induced increases in Isc were inhibited by diphenylamine-2-carboxylic acid (DPAC) but not by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a pharmacology consistent with passage of apical membrane Cl current through CFTR; Ca-activated Cl channels are inhibited by DIDS but not by DPAC. 3) Raising temperature from 22 degrees to 37 degrees C increased 125I efflux, and this increase was inhibited by DPAC and blockers of protein kinase A, but not by DIDS or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester. In support of the second hypothesis, we have earlier shown [M. Yamaya, W.E. Finkbeiner, S.Y. Chun, and J.H. Widdicombe. Am. J. Physiol. 262 (Lung Cell. Mol. Physiol. 6): L713-L724, 1992] that adenosine 3',5'-cyclic monophosphate (cAMP)-elevating agents are essentially without effect on Isc across primary cultures of human tracheal epithelium. Here, we further show that these agents are also usually without effect on 125I efflux; the mean increase in efflux in response to elevating cAMP was approximately 20% that of raising temperature from 22 degrees to 37 degrees C.


1991 ◽  
Vol 260 (6) ◽  
pp. G904-G910 ◽  
Author(s):  
K. J. Goerg ◽  
C. Diener ◽  
M. Diener ◽  
W. Rummel

The effect of prostaglandin D2 (PGD2) on colonic ion transport was studied in the Ussing chamber. PGD2 (10(-6) M) decreased baseline short-circuit current (Isc) in two preparations of rat colon descendens, a mucosa-submucosa preparation with and a mucosa preparation without the submucosal plexus. In both preparations, PGD2 inhibited the neuronally mediated secretory responses to electric field stimulation, the sea anemone toxin ATX II, and different cholinergic agents. Unidirectional flux measurements revealed that PGD2 diminished the secretagogue-induced increase in the serosal-to-mucosal flux of Cl- and thereby inhibited net Cl- secretion. PGD2, however, had no effect on the adenosine 3',5'-cyclic monophosphate-mediated response to forskolin or vasoactive intestinal peptide or on guanosine 3',5'-cyclic monophosphate-mediated secretion induced by the heat-stable enterotoxin of Escherichia coli. The PGD2 also blocked the increase in Isc evoked by two neuronally acting inflammatory mediators, i.e., bradykinin and PGI2 in the mucosa-submucosa preparation, but had no effect on the response to PGE2. Consequently, PGD2 exerts an indirect antisecretory effect caused by an inhibition of enteric secretomotor neurons of both the submucosal and the mucosal plexus.


Sign in / Sign up

Export Citation Format

Share Document