Induction of GLUT-1 protein in adult human skeletal muscle fibers

2000 ◽  
Vol 279 (5) ◽  
pp. E1191-E1195 ◽  
Author(s):  
M. Gaster ◽  
J. Franch ◽  
P. Staehr ◽  
H. Beck-Nielsen ◽  
T. Smith ◽  
...  

Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscle fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed GLUT-1. In contrast to GLUT-1, GLUT-4 was expressed in all investigated muscle fibers. Although the significance of GLUT-1 in adult human muscle fibers appears limited, GLUT-1 may be of importance for the glucose supplies in immature and regenerating muscle.

2000 ◽  
Vol 279 (3) ◽  
pp. E529-E538 ◽  
Author(s):  
M. Gaster ◽  
A. Handberg ◽  
H. Beck-Nielsen ◽  
H. D. Schrøder

The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation, but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle fibers, only GLUT-4 was expressed at significant levels. GLUT-1 immunoreactivity was below the detection limit in muscle fibers, indicating that this glucose transporter is of minor importance for muscle glucose supply. Thus we hypothesize that GLUT-4 also mediates basal glucose transport in muscle fibers, possibly through constant exposure to tonal contraction and basal insulin levels.


2019 ◽  
Vol 105 (2) ◽  
pp. 557-566 ◽  
Author(s):  
Kittichate Visuttijai ◽  
Carola Hedberg-Oldfors ◽  
Christer Thomsen ◽  
Emma Glamuzina ◽  
Cornelia Kornblum ◽  
...  

Abstract Context Glycogenin is considered to be an essential primer for glycogen biosynthesis. Nevertheless, patients with glycogenin-1 deficiency due to biallelic GYG1 (NM_004130.3) mutations can store glycogen in muscle. Glycogenin-2 has been suggested as an alternative primer for glycogen synthesis in patients with glycogenin-1 deficiency. Objective The objective of this article is to investigate the importance of glycogenin-1 and glycogenin-2 for glycogen synthesis in skeletal and cardiac muscle. Design, Setting, and Patients Glycogenin-1 and glycogenin-2 expression was analyzed by Western blot, mass spectrometry, and immunohistochemistry in liver, heart, and skeletal muscle from controls and in skeletal and cardiac muscle from patients with glycogenin-1 deficiency. Results Glycogenin-1 and glycogenin-2 both were found to be expressed in the liver, but only glycogenin-1 was identified in heart and skeletal muscle from controls. In patients with truncating GYG1 mutations, neither glycogenin-1 nor glycogenin-2 was expressed in skeletal muscle. However, nonfunctional glycogenin-1 but not glycogenin-2 was identified in cardiac muscle from patients with cardiomyopathy due to GYG1 missense mutations. By immunohistochemistry, the mutated glycogenin-1 colocalized with the storage of glycogen and polyglucosan in cardiomyocytes. Conclusions Glycogen can be synthesized in the absence of glycogenin, and glycogenin-1 deficiency is not compensated for by upregulation of functional glycogenin-2. Absence of glycogenin-1 leads to the focal accumulation of glycogen and polyglucosan in skeletal muscle fibers. Expression of mutated glycogenin-1 in the heart is deleterious, and it leads to storage of abnormal glycogen and cardiomyopathy.


1973 ◽  
Vol 344 (1) ◽  
pp. 1-12 ◽  
Author(s):  
P. D. Gollnick ◽  
R. B. Armstrong ◽  
C. W. Saubert ◽  
W. L. Sembrowich ◽  
R. E. Shepherd ◽  
...  

2018 ◽  
Author(s):  
Mohsen Afshar Bakooshli ◽  
Ethan S Lippmann ◽  
Ben Mulcahy ◽  
Nisha R Iyer ◽  
Christine T Nguyen ◽  
...  

SummaryTwo-dimensional (2D) human skeletal muscle fiber cultures are ill equipped to support the contractile properties of maturing muscle fibers. This limits their application to the study of adult human neuromuscular junction (NMJ) development, a process requiring maturation of muscle fibers in the presence of motor neuron endplates. Here we describe a three-dimensional (3D) co-culture method whereby human muscle progenitors mixed with human pluripotent stem cell-derived motor neurons self-organize to form functional NMJ connections within two weeks. Functional connectivity between motor neuron endplates and muscle fibers is confirmed with calcium transient imaging and electrophysiological recordings. Notably, we only observed epsilon acetylcholine receptor subunit protein upregulation and activity in 3D co-culture. This demonstrates that the 3D co-culture system supports a developmental shift from the embryonic to adult form of the receptor that does not occur in 2D co-culture. Further, 3D co-culture treatments with myasthenia gravis patient sera shows the ease of studying human disease with the system. This work delivers a simple, reproducible, and adaptable method to model and evaluate adult human NMJ de novo development and disease in culture.


1996 ◽  
Vol 199 (11) ◽  
pp. 2359-2367
Author(s):  
C Brösamle ◽  
D P Kuffler

The vertebrate neuromuscular junction is a highly specialized structure containing many unique proteins and an underlying cluster of nuclei. Part of this specialization results from the expression of the genes for these proteins in nuclei clustered in the postsynaptic region. Contractile activity, as well as molecules located in the synaptic extracellular matrix (ECM), have been implicated in the induction of gene expression in these clustered nuclei. The present experiments were aimed at examining whether the presence of the synaptic ECM and presynaptic cells play a role in maintaining the clustering of the nuclei. We describe the normal distribution of nuclei clustered in the synaptic region of intact adult frog, Rana pipiens, skeletal muscle fibers and show that innervation is not required to maintain the nuclear clusters. Even after long-term (4 week) denervation, the clusters remain unchanged. Dissociation of the muscle fibers with proteases that remove ECM, Schwann cells and other satellite cells from the synaptic sites is followed by a rapid (within approximately 1.5 h) and almost complete dispersal of the clustered nuclei. Attempts to recluster the postsynaptic nuclei by the application of ECM components to muscle fibers in vitro were not successful. We propose that a factor or factors, localized in the synaptic ECM as a result of synapse formation and acting via the transmembrane or cytoplasmic domains of their respective receptors, induces the formation of a specialized cytoskeleton in the postsynaptic region that is capable of pulling in or 'trapping' nuclei. The removal of these factors from the ECM by proteases brings about the disorganization of the cytoskeleton and the freeing of the 'trapped' nuclei.


Author(s):  
E. Borina ◽  
M. A. Pellegrino ◽  
G. D'Antona ◽  
R. Bottinelli

2002 ◽  
Vol 47 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Jing Hu ◽  
Itsuro Higuchi ◽  
Yoshihiro Yoshida ◽  
Tadafumi Shiraishi ◽  
Mitsuhiro Osame

1991 ◽  
Vol 187 (7) ◽  
pp. 857-863 ◽  
Author(s):  
R. Wolf ◽  
H.H. Goebel ◽  
L. Gutmann ◽  
S. Schochet

1992 ◽  
Vol 1112 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Ad A.G.M. Benders ◽  
Toin H.M.S.M. van Kuppevelt ◽  
Arie Oosterhof ◽  
Ron A. Wevers ◽  
Jacques H. Veerkamp

Sign in / Sign up

Export Citation Format

Share Document