scholarly journals Cross-inhibition between nicotinic acetylcholine receptors and P2X receptors in myenteric neurons and HEK-293 cells

2009 ◽  
Vol 296 (6) ◽  
pp. G1267-G1276 ◽  
Author(s):  
Dima A. Decker ◽  
James J. Galligan

The enteric nervous system (ENS) controls gut function. P2X receptors and nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels that mediate fast synaptic excitation in the ENS. Close molecular coupling in enteric neuronal membranes contributes to a mutually inhibitory interaction between these receptors; this effect is called cross-inhibition. We studied the molecular mechanisms responsible for cross-inhibition. Whole cell patch-clamp techniques were used to measure P2X- and nAChR-mediated currents in cultured enteric neurons and HEK-293 cells. In cultured myenteric neurons, ACh (3 mM) and ATP (1 mM) coapplication evoked an inward current that was only 57 ± 6% ( P < 0.05) of the predicted current that would have occurred if the two populations of channels were activated independently. In HEK-293 cells coexpressing α3β4 nAChR/P2X2 receptors, coapplication of ATP and ACh caused a current that was 58 ± 7% of the predicted current ( P < 0.05). To test the importance of P2X subunit COOH-terminal tail length on cross-inhibition, P2X3 and P2X4 subunits, which have shorter COOH-terminal tails, were studied. Cross-inhibition with α3β4 nAChRs and P2X3 or P2X4 subunits was similar to that occurring with P2X2 subunits. P2X receptor or α3β4 nAChR desensitization did not prevent receptor cross-inhibition. These data indicate that the α3β4-P2X receptor interaction is not restricted to P2X2 subunits. In addition, active and desensitized conformations of the P2X receptor inhibit nAChR function. These molecular interactions may modulate the function of synapses that use ATP and ACh as fast synaptic transmitters in the ENS.

1996 ◽  
Vol 16 (24) ◽  
pp. 7880-7891 ◽  
Author(s):  
Bruno Buisson ◽  
Murali Gopalakrishnan ◽  
Stephen P. Arneric ◽  
James P. Sullivan ◽  
Daniel Bertrand

2003 ◽  
Vol 285 (2) ◽  
pp. C467-C479 ◽  
Author(s):  
Mu-Lan He ◽  
Hana Zemkova ◽  
Taka-aki Koshimizu ◽  
Melanija Tomić ◽  
Stanko S. Stojilkovic

Extracellular nucleotide-activated purinergic receptors (P2XRs) are a family of cation-permeable channels that conduct small cations, including Ca2+, leading to the depolarization of cells and subsequent stimulation of voltage-gated Ca2+ influx in excitable cells. Here, we studied the spatiotemporal characteristics of intracellular Ca2+ signaling and its dependence on current signaling in excitable mouse immortalized gonadotropin-releasing hormone-secreting cells (GT1) and nonexcitable human embryonic kidney cells (HEK-293) cells expressing wild-type and chimeric P2XRs. In both cell types, P2XR generated depolarizing currents during the sustained ATP stimulation, which desensitized in order (from rapidly desensitizing to nondesensitizing): P2X3R > P2X2b + X4R > P2X2bR > P2X2a + X4R > P2X4R > P2X2aR > P2X7R. HEK-293 cells were not suitable for studies on P2XR-mediated Ca2+ influx because of the coactivation of endogenously expressed Ca2+-mobilizing purinergic P2Y receptors. However, when expressed in GT1 cells, all wild-type and chimeric P2XRs responded to agonist binding with global Ca2+ signals, which desensitized in the same order as current signals but in a significantly slower manner. The global distribution of Ca2+ signals was present independently of the rate of current desensitization. The temporal characteristics of Ca2+ signals were not affected by voltage-gated Ca2+ influx and removal of extracellular sodium. Ca2+ signals reflected well the receptor-specific EC50 values for ATP and the extracellular Zn2+ and pH sensitivities of P2XRs. These results indicate that intracellular Ca2+ measurements are useful for characterizing the pharmacological properties and messenger functions of P2XRs, as well as the kinetics of channel activity, when the host cells do not express other members of purinergic receptors.


FEBS Letters ◽  
1996 ◽  
Vol 397 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Eva Stetzer ◽  
Ullrich Ebbinghaus ◽  
Alexander Storch ◽  
Livia Poteur ◽  
Andre Schrattenholz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document