cross inhibition
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 10)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Vol 22 (24) ◽  
pp. 13661
Author(s):  
Dinesh Chaudhary ◽  
Fangchen Chong ◽  
Trilok Neupane ◽  
Joonhyeok Choi ◽  
Jun-Goo Jee

Coppers play crucial roles in the maintenance homeostasis in living species. Approximately 20 enzyme families of eukaryotes and prokaryotes are known to utilize copper atoms for catalytic activities. However, small-molecule inhibitors directly targeting catalytic centers are rare, except for those that act against tyrosinase and dopamine-β-hydroxylase (DBH). This study tested whether known tyrosinase inhibitors can inhibit the copper-containing enzymes, ceruloplasmin, DBH, and laccase. While most small molecules minimally reduced the activities of ceruloplasmin and DBH, aside from known inhibitors, 5 of 28 tested molecules significantly inhibited the function of laccase, with the Ki values in the range of 15 to 48 µM. Enzyme inhibitory kinetics classified the molecules as competitive inhibitors, whereas differential scanning fluorimetry and fluorescence quenching supported direct bindings. To the best of our knowledge, this is the first report on organic small-molecule inhibitors for laccase. Comparison of tyrosinase and DBH inhibitors using cheminformatics predicted that the presence of thione moiety would suffice to inhibit tyrosinase. Enzyme assays confirmed this prediction, leading to the discovery of two new dual tyrosinase and DBH inhibitors.


2021 ◽  
Vol 7 (35) ◽  
Author(s):  
Luis Hernandez-Nunez ◽  
Alicia Chen ◽  
Gonzalo Budelli ◽  
Matthew E. Berck ◽  
Vincent Richter ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyuan Xi ◽  
Zhengdao Hu ◽  
Xuerui Nie ◽  
Mingming Meng ◽  
Hao Xu ◽  
...  

The product of double fertilization produces seed, which contains three components: triploid endosperm, diploid embryo, and maternal seed coat. Amongst them, the endosperm plays a crucial role in coordinating seed growth. Mitogen-activated protein kinase (MAPK) cascades are conserved in eukaryotes and involved in signal transduction of plant development. MPK3, MPK6, and MPK10 form a small group of MPKs family in Arabidopsis thaliana. MPK3 and MPK6 are extensively studied and were found to be involved in diverse processes including plant reproduction. However, less is known about the function of MPK10. Here, we found WRKY10/MINI3, a member of HAIKU (IKU) pathway engaging in endosperm development, and MPK10 is high-specifically expressed in the early developmental endosperm but with opposite gradients. We further proved that MPK10 and WRKY10 cross-inhibit the expression of each other. The inhibition effect of MPK10 on gene expression of WRKY10 and the downstream targets is supported by the fact that MPK10 interacts with WRKY10 and suppresses the transcriptional activity of WRKY10. Constantly, mpk10 mutants produce big seeds while WRKY10/MINI3 positively regulate seed growth. Altogether, our data provides a model of WRKY10 and MPK10 regulating endosperm development with a unique cross inhibitory mechanism.


2020 ◽  
Vol 21 (14) ◽  
pp. 5146
Author(s):  
Chenjie Fei ◽  
Myron A. Zwozdesky ◽  
James L. Stafford

Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are a family of immunoregulatory proteins shown to regulate several innate immune cell effector responses, including phagocytosis. The precise mechanisms of IpLITR-mediated regulation of the phagocytic process are not entirely understood, but we have previously shown that different IpLITR-types use classical as well as novel pathways for controlling immune cell-mediated target engulfment. To date, all functional assessments of IpLITR-mediated regulatory actions have focused on the independent characterization of select IpLITR-types in transfected cells. As members of the immunoglobulin superfamily, many IpLITRs share similar extracellular Ig-like domains, thus it is possible that various IpLITR actions are influenced by cross-talk mechanisms between different IpLITR-types; analogous to the paired innate receptor paradigm in mammals. Here, we describe in detail the co-expression of different IpLITR-types in the human embryonic AD293 cell line and examination of their receptor cross-talk mechanisms during the regulation of the phagocytic response using imaging flow cytometry, confocal microscopy, and immunoprecipitation protocols. Overall, our data provides interesting new insights into the integrated control of phagocytosis via the antagonistic networking of independent IpLITR-types that requires the selective recruitment of inhibitory signaling molecules for the initiation and sustained cross-inhibition of phagocytosis.


2020 ◽  
Author(s):  
Luis Hernandez-Nunez ◽  
Alicia Chen ◽  
Gonzalo Budelli ◽  
Vincent Richter ◽  
Anna Rist ◽  
...  

Body temperature homeostasis is an essential function that relies upon the integration of the outputs from multiple classes of cooling- and warming-responsive cells. The computations that integrate these diverse outputs to control body temperature are not understood. Here we discover a new set of Warming Cells (WCs), and show that the outputs of these WCs and previously described Cooling Cells (CCs1) are combined in a cross-inhibition computation to drive thermal homeostasis in larval Drosophila. We find that WCs and CCs are opponent sensors that operate in synchrony above, below, and near the homeostatic set-point, with WCs consistently activated by warming and inhibited by cooling, and CCs the converse. Molecularly, these opponent sensors rely on overlapping combinations of Ionotropic Receptors to detect temperature changes: Ir68a, Ir93a, and Ir25a for WCs; Ir21a, Ir93a, and Ir25a for CCs. Using a combination of optogenetics, sensory receptor mutants, and quantitative behavioral analysis, we find that the larva uses flexible cross-inhibition of WC and CC outputs to locate and stay near the homeostatic set-point. Balanced cross-inhibition near the set-point suppresses any directed movement along temperature gradients. Above the set-point, WCs mediate avoidance to warming while cross-inhibiting avoidance to cooling. Below the set-point, CCs mediate avoidance to cooling while cross-inhibiting avoidance to warming. Our results demonstrate how flexible cross-inhibition between warming and cooling pathways can orchestrate homeostatic thermoregulation.


Author(s):  
Lan Deng ◽  
Jack Denham ◽  
Charu Arya ◽  
Omer Yuval ◽  
Netta Cohen ◽  
...  

AbstractInhibition plays important roles in modulating the neural activities of sensory and motor systems at different levels from synapses to brain regions. To achieve coordinated movement, motor systems produce alternating contraction of antagonist muscles, whether along the body axis or within and among limbs. In the nematode C. elegans, a small network involving excitatory cholinergic and inhibitory GABAergic motoneurons generates the dorsoventral alternation of body-wall muscles that supports undulatory locomotion. Inhibition has been suggested to be necessary for backward undulation because mutants that are defective in GABA transmission exhibit a shrinking phenotype in response to a harsh touch to the head, whereas wild-type animals produce a backward escape response. Here, we demonstrate that the shrinking phenotype is exhibited by wild-type as well as mutant animals in response to harsh touch to the head or tail, but only GABA transmission mutants show slow locomotion after stimulation. Impairment of GABA transmission, either genetically or optogenetically, induces lower undulation frequency and lower translocation speed during crawling and swimming in both directions. The activity patterns of GABAergic motoneurons are different during low and high undulation frequencies. During low undulation frequency, GABAergic VD and DD motoneurons show similar activity patterns, while during high undulation frequency, their activity alternates. The experimental results suggest at least three non-mutually exclusive roles for inhibition that could underlie fast undulatory locomotion in C. elegans, which we tested with computational models: cross-inhibition or disinhibition of body-wall muscles, or inhibitory reset.Significance StatementInhibition serves multiple roles in the generation, maintenance, and modulation of the locomotive program and supports the alternating activation of antagonistic muscles. When the locomotor frequency increases, more inhibition is required. To better understand the role of inhibition in locomotion, we used C. elegans as an animal model, and challenged a prevalent hypothesis that cross-inhibition supports the dorsoventral alternation. We find that inhibition is related to the speed rather than the direction of locomotion and demonstrate that inhibition is unnecessary for muscle alternation during slow undulation in either direction but crucial to sustain rapid dorsoventral alternation. We combined calcium imaging of motoneurons and muscle with computational models to test hypotheses for the role of inhibition in locomotion.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Le Yan ◽  
Richard A Neher ◽  
Boris I Shraiman

Rapidly evolving pathogens like influenza viruses can persist by changing their antigenic properties fast enough to evade the adaptive immunity, yet they rarely split into diverging lineages. By mapping the multi-strain Susceptible-Infected-Recovered model onto the traveling wave model of adapting populations, we demonstrate that persistence of a rapidly evolving, Red-Queen-like state of the pathogen population requires long-ranged cross-immunity and sufficiently large population sizes. This state is unstable and the population goes extinct or ‘speciates’ into two pathogen strains with antigenic divergence beyond the range of cross-inhibition. However, in a certain range of evolutionary parameters, a single cross-inhibiting population can exist for times long compared to the time to the most recent common ancestor (TM⁢R⁢C⁢A) and gives rise to phylogenetic patterns typical of influenza virus. We demonstrate that the rate of speciation is related to fluctuations of TM⁢R⁢C⁢A and construct a ‘phase diagram’ identifying different phylodynamic regimes as a function of evolutionary parameters.


Sign in / Sign up

Export Citation Format

Share Document