Effects of 1,25-dihydroxyvitamin D3 on colonic calcium transport in vitamin D-deficient and normal rats

1984 ◽  
Vol 246 (3) ◽  
pp. G268-G273
Author(s):  
M. J. Favus ◽  
C. B. Langman

To determine whether prior vitamin D intake influences the intestinal calcium absorptive action of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], we measured in vitro the two unidirectional transepithelial fluxes of calcium across descending colon segments from rats fed either a vitamin D-deficient or normal diet and injected with either 10, 25, or 75 ng of 1,25(OH)2D3 or vehicle alone. Vitamin D deficiency abolished net calcium absorption [J net, -2 +/- 2 vs. 12 +/- 2 (SE) nmol X cm-2 X h-1, P less than 0.001], and 10 ng of 1,25(OH)2D3 raised J net to levels found in normal rats. Larger doses (25 and 75 ng) increased J net above levels in normal rats given the same dose. In normal rats only 75 ng of 1,25(OH)2D3 increased calcium J net above vehicle control values (12 +/- 2 vs. 38 +/- 4 nmol X cm-2 X h-1, P less than 0.001). Circulating 1,25(OH)2D3 measured by radioreceptor assay was well correlated with calcium transport. For each dose of 1,25(OH)2D3 higher serum 1,25(OH)2D3 levels were reached in vitamin D-deficient rats. Only the 75-ng dose increased circulating 1,25(OH)2D3 and colonic calcium transport in normal rats. Intravenous [3H]-1,25(OH)2D3 disappeared more rapidly from the circulation of normal rats, suggesting that accelerated metabolic degradative processes for 1,25(OH)2D3 may be present in normal but not in vitamin D-deficient rats and may account for the lack of a biological response to 1,25(OH)2D3 in normal animals.

1985 ◽  
Vol 248 (6) ◽  
pp. G676-G681 ◽  
Author(s):  
M. J. Favus ◽  
E. Angeid-Backman

To determine whether calcium transport across rat cecum is vitamin D dependent, we measured in vitro bidirectional calcium fluxes under short-circuited conditions across cecum from rats that were vitamin D deficient, vitamin D replete, or vitamin D deficient or vitamin D replete and injected with either 10, 25, or 75 ng of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] daily for 4 days before study. Vitamin D deficiency decreased net calcium absorption (Jnet) by reducing the mucosal-to-serosal absorptive flux (Jm----s) from 168 +/- 18 to 33 +/- 5 nmol X cm-2 X h-1 (mean +/- SE, P less than 0.0001). Twenty-five nanograms of 1,25(OH)2D3 raised Jm----s to 124 +/- 17 nmol X cm-2 X h-1, not different from values in vitamin D-replete rats. Although active calcium absorption by cecum appears to respond to vitamin D, calcium Jm----s is near maximal under normal conditions, and further stimulation follows only pharmacological doses of 1,25(OH)2D3. The in vitro addition of the calcium channel blocker verapamil (5 X 10(-5) M) to the mucosal side of cecum from vitamin D-replete rats reduced calcium Jm----s, but lower concentrations of verapamil or nitrendipine (10(-5) to 10(-9) M) did not reduce calcium Jm----s. The lack of inhibition by low concentrations of channel blockers suggest that the plasma membrane channels for calcium translocation across intestinal epithelium may not be analogous to voltage-dependent calcium channels in excitable tissue. The inhibition of cecal calcium transport that was blocked by high concentrations of verapamil may represent a nonspecific effect of the agent.


1983 ◽  
Vol 244 (6) ◽  
pp. G695-G700 ◽  
Author(s):  
D. Pansu ◽  
C. Bellaton ◽  
C. Roche ◽  
F. Bronner

An in situ ligated loop procedure was applied to dissect transmural calcium transport in the intestine into two components, a saturable and a nonsaturable process. The existence of two such processes was confirmed in the duodenum, but ileal calcium transport was devoid of the saturable component. There was a small saturable component in the upper jejunum. The level of CaBP, the vitamin D-dependent cytosolic calcium-binding protein (Mr, approximately or equal to 9,000), corresponded to the magnitude of the saturable component. No CaBP was detected in the ileum. Vitamin D dependence of the saturable component was established by inducing it in the duodenum of vitamin D-deficient animals following intraperitoneal injection of 1,25-dihydroxyvitamin D3. In these same animals, conversely, the ileum did not respond to exogenous 1,25-dihydroxyvitamin D3. This confirms the absence in the ileum of the saturable component of transmural calcium movement and the fact that the nonsaturable component is not vitamin D dependent. Everted sac experiments also showed that duodenal sacs from vitamin D-replete or -repleted animals transported calcium against a chemical gradient, whereas ileal sacs did not. Vitamin D regulation of intestinal calcium absorption thus occurs only in the proximal intestine, even though calcium is absorbed down its chemical gradient all along the small intestine.


1984 ◽  
Vol 246 (2) ◽  
pp. E168-E173 ◽  
Author(s):  
Y. Tanaka ◽  
H. F. DeLuca

The effects of thyroparathyroidectomy, parathyroid hormone, 1,25-dihydroxyvitamin D3, dietary calcium, dietary phosphorus, age, and sex on the renal 25-hydroxyvitamin D3 1- and 24-hydroxylases measured in vitro in rats have been studied. Thyroparathyroidectomy of vitamin D-deficient rats abolishes 25-hydroxyvitamin D3 1-hydroxylase activity, and administration of bovine parathyroid extract to the thyroparathyroidectomized rat restores diminished 1-hydroxylase activity. Both suppression and restoration of the enzyme activities require many hours (18-24 h) independent of rapid changes in serum calcium and inorganic phosphorus levels in response to these manipulations. Administration of 1,25-dihydroxyvitamin D3 to vitamin D-deficient rats suppresses 25-hydroxyvitamin D3 1-hydroxylase activity and stimulates 25-hydroxyvitamin D3 24-hydroxylase activity within 48 h. Rats maintained on a low-calcium or a low-phosphorus diet with a daily supplement of 20 IU vitamin D3 show high 25-hydroxyvitamin D3 1-hydroxylase activity and low 24-hydroxylase activity as compared with rats similarly treated but fed a diet containing adequate calcium or adequate phosphorus. When vitamin D-sufficient rats having suppressed renal 25-hydroxyvitamin D3 1-hydroxylase activity are placed on a low-calcium vitamin D-deficient diet for 7 days, the 1-hydroxylase activity is greatly stimulated in 6-wk-old rats but much less so in rats with advancing age.


1984 ◽  
Vol 247 (2) ◽  
pp. G189-G192 ◽  
Author(s):  
W. C. Grinstead ◽  
C. Y. Pak ◽  
G. J. Krejs

Calcium absorption in patients with short bowel syndrome is significantly higher when the colon is left intact. To study calcium transport in the large bowel, we investigated whether exogenous 1,25-dihydroxyvitamin D3 [1,25(OH2)D3] can induce or enhance colonic calcium absorption in healthy subjects ingesting a normal diet. Steady-state colon perfusion studies were performed before and after 1 wk of 1,25(OH)2D3 administration (2 micrograms/day, 10 subjects). Serum 1,25-dihydroxyvitamin D concentration rose from 23.0 +/- 2.2 to 39.5 +/- 4.3 pg/ml (mean +/- SE, P less than 0.01). In the basal state the mean net movement of calcium was not significantly different from zero when a 5 mM calcium gluconate solution was perfused (100 +/- 84 mumol X h-1 X entire colon secreted-1). Vitamin D administration resulted in a significant change toward calcium absorption (106 +/- 47 mumol X h-1 X entire colon absorbed-1, P less than 0.02). 1,25(OH)2D3 had no effect on colonic magnesium, phosphate, water, and electrolyte movement. This study demonstrates that in healthy humans exogenous 1,25(OH)2D3 can change colonic calcium movement toward absorption. We suspect that similar changes in colonic calcium transport are caused by endogenous 1,25(OH)2D3 when calcium deficiency has occurred in short bowel syndrome.


1982 ◽  
Vol 242 (6) ◽  
pp. G575-G581 ◽  
Author(s):  
M. J. Favus ◽  
F. L. Coe ◽  
S. C. Kathpalia ◽  
A. Porat ◽  
P. K. Sen ◽  
...  

Previous studies have shown that thiazide diuretic agents reverse secondary hyperparathyroidism and reduce circulating 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and intestinal calcium absorption rates in patients with idiopathic hypercalciuria of the renal-leak variety. We have investigated whether thiazides can reverse the secondary increase in serum parathyroid hormone (PTH) and 1,25(OH)2D3 levels or intestinal calcium absorption induced by feeding rats a diet low in calcium (LCD, 0.02% calcium) but adequate in phosphorus and vitamin D. We found that LCD increased circulating immunoreactive PTH [chow vs. LCD, 0.52 +/- 0.06 vs. 1.06 +2- 0.1 (SE) ng/ml, P less than 0.001], 1,25(OH)2D3 (chow vs. LCD, 101 +/- 15 vs. 325 +/- 38 pg/ml, P less than 0.001), calcium uptake by everted gut sacs from duodenum, ileum, and descending colon, and net calcium absorption by descending colon studied in Ussing chambers in vitro. Chlorothiazide (CTZ) prevented the increase in PTH during LCD (chow + CTZ vs. LCD + CTZ, 0.69 +/- 0.07 vs. 0.73 +/- 0.06, NS) but not the increase in 1,25(OH)2D3 (chow + CTZ vs. LCD + CTZ, 88 +/- 10 vs. 277 +/- 31, P less than 0.002) or intestinal calcium transport. The drug caused no change in serum 1,25(OH)2D3 or intestinal calcium absorption in rats fed normal chow. In rats given exogenous 1,25(OH)2D3 to stimulate intestinal calcium absorption, CTZ reduced urine calcium excretion greatly but did not alter intestinal calcium absorption.


1983 ◽  
Vol 31 (3) ◽  
pp. 426-432 ◽  
Author(s):  
A N Taylor

The vitamin D-induced calcium-binding protein (CaBP) was localized in histological sections of chick duodenum using the peroxidase-antiperoxidase immunocytochemical technique. The time-course of appearance of CaBP in rachitic chicks was investigated from 0 to 120 hr after stimulation by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). CaBP was not routinely detected at 0 hr after 1,25(OH)2D3 administration. CaBP was first noted in some, but not all, of the samples taken 2 hr following 1,25(OH)2D3 and was detected in all 2 1/2 hr samples. The number of CaBP-containing absorptive cells and the apparent CaBP concentration both increased to a maximum at about 16-24 hr. At later times, as CaBP free cells migrated up the villi, the CaBP-containing cells decreased in number, but even at 120 hr post 1,25(OH)2D3 dose there were significant numbers of CaBP-containing cells present. The relationships between time-course of CaBP location on intestinal villi, enterocyte migration rates, and the time-course of 1,25(OH)2D3 stimulated intestinal calcium transport are discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chandrashekar Annamalai ◽  
Rohit Seth ◽  
Pragasam Viswanathan

Globally, acute kidney injury (AKI) is associated with significant mortality and an enormous economic burden. Whereas iron is essential for metabolically active renal cells, it has the potential to cause renal cytotoxicity by promoting Fenton chemistry-based oxidative stress involving lipid peroxidation. In addition, 1,25-dihydroxyvitamin D3 (calcitriol), the active form of vitamin D, is reported to have an antioxidative role. In this study, we intended to demonstrate the impact of vitamin D on iron-mediated oxidant stress and cytotoxicity of Vero cells exposed to iohexol, a low osmolar iodine-containing contrast media in vitro. Cultured Vero cells were pretreated with 1,25-dihydroxyvitamin D3 dissolved in absolute ethanol (0.05%, 2.0 mM) at a dose of 1 mM for 6 hours. Subsequently, iohexol was added at a concentration of 100 mg iodine per mL and incubated for 3 hours. Total cellular iron content was analysed by a flame atomic absorption spectrophotometer at 372 nm. Lipid peroxidation was determined by TBARS (thiobarbituric acid reactive species) assay. Antioxidants including total thiol content were assessed by Ellman’s method, catalase by colorimetric method, and superoxide dismutase (SOD) by nitroblue tetrazolium assay. The cells were stained with DAPI (4 ′ ,6-diamidino-2-phenylindole), and the cytotoxicity was evaluated by viability assay (MTT assay). The results indicated that iohexol exposure caused a significant increase of the total iron content in Vero cells. A concomitant increase of lipid peroxidation and decrease of total thiol protein levels, catalase, and superoxide dismutase activity were observed along with decreased cell viability in comparison with the controls. Furthermore, these changes were significantly reversed when the cells were pretreated with vitamin D prior to incubation with iohexol. Our findings of this in vitro model of iohexol-induced renotoxicity lend further support to the nephrotoxic potential of iron and underpin the possible clinical utility of vitamin D for the treatment and prevention of AKI.


Sign in / Sign up

Export Citation Format

Share Document