calcium binding protein
Recently Published Documents


TOTAL DOCUMENTS

1607
(FIVE YEARS 102)

H-INDEX

92
(FIVE YEARS 5)

Life Sciences ◽  
2022 ◽  
pp. 120278
Author(s):  
Tripti Singh ◽  
Pallabi Banerjee ◽  
Uditi ◽  
Sarita Kumari ◽  
Anita Chopra ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259217
Author(s):  
Kazuhito Mietani ◽  
Maiko Hasegawa-Moriyama ◽  
Reo Inoue ◽  
Toru Ogata ◽  
Nobutake Shimojo ◽  
...  

Background Delirium is the most common central nervous system complication after surgery. Detection of phosphorylated neurofilament heavy subunit in the serum reflects axonal damage within the central cervous system and is associated with the severity of postoperative delirium. Neuron-specific enolase and S100 calcium-binding protein β have been identified as possible serum biomarkers of postoperative delirium. This study examined the association of the levels of these markers with incidence of postoperative delirium and detection of phosphorylated neurofilament heavy subunit. Methods This study represents a post hoc analysis of 117 patients who participated in a prospective observational study of postoperative delirium in patients undergoing cancer surgery. Patients were clinically assessed for development of postoperative delirium within the first five days of surgery. Serum levels of phosphorylated neurofilament heavy subunit, neuron-specific enolase, and S100 calcium-binding protein β levels were measured on postoperative day 3. Results Forty-one patients (35%) were clinically diagnosed with postoperative delirium. Neuron-specific enolase level (P < 0.0001) and the proportion of patients positive for phosphorylated neurofilament heavy subunit (P < 0.0001) were significantly higher in the group of patients with postoperative delirium. Neuron-specific enolase level discriminated between patients with and without clinically diagnosed postoperative delirium with significantly high accuracy (area under the curve [AUC], 0.87; 95% confidence interval [CI], 0.79–0.95; P < 0.0001). Neuron-specific enolase level was associated with incidence of postoperative delirium independently of age (adjusted odds ratio, 8.291; 95% Cl, 3.506−33.286; P < 0.0001). The AUC for the serum neuron-specific enolase level in detecting phosphorylated neurofilament heavy subunit was significant (AUC, 0.78; 95% CI, 0.66–0.90; P < 0.0001). Conclusion Elevated serum neuron-specific enolase was associated with postoperative delirium independent of age as well as detection of phosphorylated neurofilament heavy subunit in serum. Serum neuron-specific enolase and phosphorylated neurofilament heavy subunit might be useful as biomarkers of postoperative delirium. Trial registration University Medical Information Network (UMIN) trial ID: UMIN000010329; https://clinicaltrials.gov/.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jing Wang ◽  
Shu Xia ◽  
Jing Zhao ◽  
Chen Gong ◽  
Qingsong Xi ◽  
...  

Background: Secreted modular calcium-binding protein 1 (SMOC1) belongs to a family of matricellular proteins; it was involved in embryo development, endothelial cell proliferation, angiogenesis, integrin–matrix interactions, cell adhesion, and regulation of glucose metabolism. Previous studies showed that the expression of SMOC1 was increased in some tumors. However, the prognostic value and the biological function of SMOC1 in tumor remain unclear.Methods: In this study, we explored the expression profile and prognostic value of SMOC1 in pan-cancers, especially glioma, via multiple databases, including Oncomine, Gene Expression Profiling Interactive 2, PrognoScan, Kaplan–Meier plotter, and the Chinese Glioma Genome Atlas database. Furthermore, LinkedOmics was used to identify the genes coexpressed with SMOC1 and to perform Kyoto Encyclopedia of Genes and Genomes pathways and Gene Ontology analysis in low-grade glioma (LGG). Also, the Cancer Single-Cell State Atlas database was used to evaluate the correlation between SMOC1 expression and functional state activities in glioma cells. In addition, the Tumor Immune Estimation Resource and TISIDB databases were used to evaluate the correlations between SMOC1 expression and tumor-infiltrating immune cells in the tumor microenvironment.Results: Compared with normal brain tissues, the expression of SMOC1 was increased in LGG tissues. The higher expression of SMOC1 was significantly correlated with better survival of LGG patients. Additionally, functional analyses showed that the SMOC1 coexpressed genes were inhibited in processes such as response to type I interferon and interferon-gamma, lymphocyte-mediated immunity, leukocyte migration, adaptive immune response, neutrophil-mediated immunity, T cell activation, and pathways including EMC–receptor interaction, Th17 cell differentiation, and leukocyte trans-endothelial migration in LGG. Moreover, the expression of SMOC1 was correlated with stemness, hypoxia, EMT, and metastasis of glioma cells. Additionally, the expression of SMOC1 expression was negatively correlated with levels of infiltrating B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells, and gene markers of most immune cells in LGG.Conclusion: Our results suggest that SMOC1 could be a potential biomarker to determine prognosis and might play a specific role in the tumor microenvironment of glioma, thereby influencing the development and progression of glioma. These findings provide some new insights for further investigation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jinguo Zhang ◽  
Jian Chen ◽  
Benjie Shan ◽  
Lin Lin ◽  
Jie Dong ◽  
...  

The soluble resistance-related calcium-binding protein (sorcin, SRI) serves as the calcium-binding protein for the regulation of calcium homeostasis and multidrug resistance. Although the mounting evidence suggests a crucial role of SRI in the chemotherapeutic resistance of certain types of tumors, insights into pan-cancer analysis of SRI are unavailable. Therefore, this study aimed to probe the multifaceted properties of SRI across the 33 cancer types. The SRI expression was analyzed via The Cancer Genome Atlas (TCGA) and Genotype Tissue-Expression (GTEX) database. The SRI genomic alterations and drug sensitivity analysis were performed based on the cBioPortal and the CellMiner database. Furthermore, the correlations among the SRI expression and survival outcomes, clinical features, stemness, tumor mutation burden (TMB), microsatellite instability (MSI), and immune cells infiltration were analyzed using TCGA data. The differential analysis showed that SRI was upregulated in 25 tumor types compared with the normal tissues. Aberrant expression of SRI was able to predict survival in different cancers. Further, the most frequent alteration of SRI genomic was amplification. Moreover, the aberrant SRI expression was related to stemness score, epithelial-mesenchymal-transition (EMT)-related genes, MSI, TMB, and tumor immune microenvironment in various types of cancer. TIMER database mining further found that the SRI expression was significantly correlated with the infiltration levels of various immune cells in certain types of cancer. Intriguingly, the SRI expression was negatively correlated with drug sensitivity of fluorouracil, paclitaxel, docetaxel, and isotretinoin. Our findings highlight the predictive value of SRI in cancer and provide insights for illustrating the role of SRI in tumorigenesis and drug resistance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tingting Zhou ◽  
Wei Liu ◽  
Xiaofang Yu ◽  
Zengcai Cao ◽  
Weijing Mu ◽  
...  

Objective: The aim of this study was to explore the development of enteric glial cells (EGCs) in different segments of Hirschsprung's disease (HSCR).Methods: Colonic specimens from 35 children with HSCR were selected to analyze the relative expression of glial fibrillary acidic protein and S100 calcium-binding protein B using Western blotting and real-time fluorescence quantitative PCR. Immunofluorescence and immunohistochemical staining were performed to determine the distribution of myenteric EGCs and neuronal cells in different segments of HSCR.Results: There was a trend of diminished protein and mRNA expression of glial fibrillary acidic protein and S100 calcium-binding protein B from the proximal, dilated, and transitional segments to the aganglionic segment (p &lt; 0.05). Immunofluorescence and immunohistochemistry showed that the EGCs in the aganglionic, transitional, and dilated colonic muscles were morphologically abnormal, which was consistent with the dysplasia of myenteric neurons.Conclusion: Aberrant development of myenteric EGCs was observed in the colon of HSCR, which may affect the survival of enteric neurons.


Author(s):  
Xiaoying You ◽  
Min Li ◽  
Hongwei Cai ◽  
Wenwen Zhang ◽  
Ye Hong ◽  
...  

Gastric cancer (GC) is one of the most common malignant tumors of the digestive system, listed as the second cause of cancer-related deaths worldwide. S100 Calcium Binding Protein A16 (S100A16) is an acidic calcium-binding protein associated with several types of tumor progression. However, the function of S100A16 in GC is still not very clear. In this study, we analyzed S100A16 expression with the GEPIA database and the UALCAN cancer database. Meanwhile, 100 clinical GC samples were used for the evaluation of its role in the prognostic analysis. We found that S100A16 is significantly upregulated in GC tissues and closely correlated with poor prognosis in GC patients. Functional studies reveal that S100A16 overexpression triggers GC cell proliferation and migration both in vivo and in vitro; by contrast, S100A16 knockdown restricts the speed of GC cell growth and mobility. Proteomic analysis results reveal a large S100A16 interactome, which includes ZO-2 (Zonula Occludens-2), a master regulator of cell-to-cell tight junctions. Mechanistic assay results indicate that excessive S100A16 instigates GC cell invasion, migration, and epithelial-mesenchymal transition (EMT) via ZO-2 inhibition, which arose from S100A16-mediated ZO-2 ubiquitination and degradation. Our results not only reveal that S100A16 is a promising candidate biomarker in GC early diagnosis and prediction of metastasis, but also establish the therapeutic importance of targeting S100A16 to prevent ZO-2 loss and suppress GC metastasis and progression.


2021 ◽  
pp. 154596832110413
Author(s):  
Zachary Troiani ◽  
Luis Ascanio ◽  
Christina P. Rossitto ◽  
Muhammad Ali ◽  
Nicki Mohammadi ◽  
...  

Background. Intracerebral hemorrhage (ICH) accounts for 10–20% of all strokes and is associated with high morbidity and mortality. Recent studies have identified serum biomarkers as a means to improve outcome prognostication in poor grade ICH patients. Poor prognosis of ICH patients and complex pathophysiology of the disease necessitate prognostic serum biomarkers to help guide treatment recommendations. Objective. The objective is to systematically review all biomarkers used to predict long-term functional outcome in patients with spontaneous intracerebral hemorrhage. Results. We identified 36 studies investigating the predictive utility of 50 discrete biomarkers. Data from 4865 ICH patients were reviewed. Inflammatory biomarkers (11/50) were most often studied, followed by oxidative (8/50), then neuron and astrocyte-specific (7/50). S100 calcium binding protein B, white blood cell count, and copeptin were the most often studied individual biomarkers. The prognostic utility of 23 biomarkers was analyzed using receiver operating characteristic curves. Area under the curve (AUC) values for all available biomarkers except neutrophil/lymphocyte ratio were acceptable. Twenty of the 23 biomarkers were characterized by at least one excellent AUC value. Vascular endothelial growth factor, glial fibrillary astrocyte protein, and S100 calcium binding protein B were characterized by outstanding AUC. Conclusions. We identified the inflammatory and neuron and astrocyte-specific biomarker categories as having the greatest number of significant individual biomarker predictors of long-term outcome. Further investigation utilizing cross-validation of prediction models in a second independent group and blinded assessment of outcomes for the predictive utility of biomarkers in patients with ICH is warranted.


2021 ◽  
Author(s):  
Yifei Sun ◽  
Ya Fan ◽  
Min Li ◽  
Zheng Wang ◽  
Dongming Su ◽  
...  

Abstract The pathogenesis of acute kidney injury (AKI) is associated with activation of multiple signaling pathways, including Wnt/β-catenin signaling. However, the mechanism of Wnt/β-catenin pathway activation in renal interstitial fibroblasts during AKI is unclear. S100 calcium binding protein A16 (S100A16), a new member of calcium binding protein S100 family, is a multi-functional signaling factor involved in various pathogenies, including tumors, glycolipid metabolism disorder, and chronic kidney disease (CKD). We investigated the potential participation of S100A16 in Wnt/β-catenin pathway activation during AKI by subjecting wild-type (WT) and S100A16 knockout (S100A16+/-) mice to the ischemia-reperfusion injury (IRI), and revealed S100A16 upregulation in this model, in which knockout of S100A16 impeded the Wnt/β-catenin signaling pathway activation and recovered the expression of downstream hepatocyte growth factor (HGF). We also found that S100A16 was highly expressed in α-SMA positive renal fibroblasts in vivo. Consistently, in rat renal interstitial fibroblasts (NRK-49F cells), both hypoxia and S100A16 overexpression exacerbated fibroblasts apoptosis and inhibited HGF secretion; whereas S100A16 knockdown or Wnt/β-catenin pathway inhibitor ICG-001 reversed these changes. Mechanistically, we show that S100A16 promotes Wnt/β-catenin signaling activation via the ubiquitylation and degradation of β-catenin complex members, glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α), mediated by E3 ubiquitin ligase, the HMG-CoA reductase degradation protein 1 (HRD1). Our study identified the S100A16 as a key regulator in the activation of Wnt/β-catenin signaling pathway in AKI.


Sign in / Sign up

Export Citation Format

Share Document