Receptor antagonists for gastrointestinal peptides

1993 ◽  
Vol 264 (3) ◽  
pp. G399-G406
Author(s):  
M. E. Presti ◽  
J. D. Gardner

Receptors for gastrointestinal peptides are all G protein-coupled receptors. Since the discovery that dibutyryl guanosine 3',5'-cyclic monophosphate was a cholecystokinin-receptor antagonist, a variety of receptor antagonists have been developed for a number of different gastrointestinal peptides. These antagonists have been useful in classifying receptors for gastrointestinal peptides and in elucidating complex regulation of gastrointestinal function. Some antagonists also have therapeutic potential. Based on the receptors with which they interact, gastrointestinal peptides can be grouped into families, and, in general, a given receptor antagonist is specific for a given family. This review covers the different families of gastrointestinal peptides and the major antagonists that exist for each family.

Author(s):  
Zeinab Vahidinia ◽  
Mohammad Taghi Joghataei ◽  
Cordian Beyer ◽  
Mohammad Karimian ◽  
Abolfazl Azami Tameh

2019 ◽  
Author(s):  
A Pietraszewska-Bogiel ◽  
L van Weeren ◽  
J Goedhart

ABSTRACTOlfactory receptors (ORs) constitute the largest family of G-protein coupled receptors. They are responsible for the perception of odor (olfaction) and also play important roles in other biological processes, including regulation of cell proliferation. Their increasing diagnostic and therapeutic potential, especially for cancer research, requests the ongoing development of methodologies that would allow their robust functional expression in non-olfactory cells, and dynamic analysis of their signaling pathways. To enable realtime detection of OR activity, we use single cell imaging with genetically encoded fluorescent biosensors, Yellow Cameleon or EPAC, which are routinely used for kinetic measurements of Ca2+ or cAMP signaling downstream of various G-protein coupled receptors. We demonstrate that the co-expression of Lucy-Rho tagged variants of ORs together with an accessory protein, RTP1s, in HEK293TN cells is sufficient to detect the activity of a panel of ORs. Using this methodology, we were able to detect both Ca2+ and cAMP signaling downstream of twelve ORs within 2 minutes from the application of odorant.


Sign in / Sign up

Export Citation Format

Share Document