Vitamin D derivatives acutely reduce endothelium-dependent contractions in the aorta of the spontaneously hypertensive rat

2008 ◽  
Vol 295 (1) ◽  
pp. H289-H296 ◽  
Author(s):  
Michael S. K. Wong ◽  
R. Delansorne ◽  
Ricky Y. K. Man ◽  
Paul M. Vanhoutte

The available evidence suggests that vitamin D has cardiovascular effects besides regulating calcium homeostasis. To examine the effect of 1,25-dihydroxyvitamin D3, the major metabolite of vitamin D, on endothelium-dependent contractions, aortic rings of spontaneously hypertensive rats (SHR) were suspended in organ chambers for isometric force measurements. Rings were incubated with Nω-nitro-l-arginine methyl ester (l-NAME) and then exposed to increasing concentrations of acetylcholine, ATP, or the calcium ionophore to trigger contractions. This was done in the absence or presence of 1,25-dihydroxyvitamin D3. The release of prostacyclin after acetylcholine or A-23187 stimulation was also measured. The cytosolic-free calcium concentration was measured by confocal microscopy after incubation with the fluorescent dyes fluo-4 and fura red. The presence of vitamin D receptors was confirmed using immunohistochemistry. Acetylcholine- and ATP-induced endothelium-dependent contractions were significantly reduced compared with those obtained in the absence of the drug. This effect was not present if A-23187 was used as an agonist. The acetylcholine- but not the A-23187-induced release of prostacyclin was reduced by the acute administration of 1,25-dihydroxyvitamin D3. Exposure to 1,25-dihydroxyvitamin D3 reduced the increase in cytosolic-free calcium concentration caused by acetylcholine but not by A-23187 in cells. Vitamin D receptors were densely distributed in the endothelium. Inecalcitol (19-nor-14-epi-23-yne-1,25-dihydroxyvitamin D3), a synthetic analog of vitamin D, caused a comparable depression of endothelium-dependent contractions as 1,25-dihydroxyvitamin D3. These results demonstrate that vitamin D3 modulates vascular tone by reducing calcium influx into the endothelial cells and hence decreasing the production of endothelium-derived contracting factors.

2010 ◽  
Vol 299 (4) ◽  
pp. H1226-H1234 ◽  
Author(s):  
Michael S. K. Wong ◽  
R. Delansorne ◽  
Ricky Y. K. Man ◽  
P. Svenningsen ◽  
Paul M. Vanhoutte

Vitamin D has cardiovascular protective effects besides regulating calcium homeostasis. To examine the chronic in vivo effect of a physiological dose of 1,25-dihydroxyvitamin D3on the occurrence of endothelium-dependent contractions, spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were treated with the vitamin D derivative for 6 wk. The serum 1,25-dihydroxyvitamin D3level of both treated WKY and SHR was significantly higher than in untreated rats while the mean arterial blood pressure of the treated SHR was significantly lower than that of control SHR. Aortic rings with or without endothelium were studied in conventional organ chambers for isometric force measurement. Confocal microscopy was used to measure the cytosolic free calcium concentration (with the fluorescent dye fluo 4) and reactive oxygen species (ROS; with dichlorodihydrofluorescein diacetate). Reverse transcription PCR and Western blotting were used to determine the mRNA and protein expression level of cyclooxygenase-1 (COX-1), prostacyclin synthase, and thromboxane synthase. The endothelium-dependent concentration-contraction curves to both acetylcholine- and A-23187-induced contractions were shifted to the right in aortas from treated SHR but not from treated WKY. The chronic treatment normalized the relaxations of contracted preparations to acetylcholine. There were no significant differences in the increases in cytosolic free calcium concentration evoked by acetylcholine and A-23187 between control and treated groups. The endothelial ROS level was higher in SHR than WKY aortas and reduced by the chronic treatment. The gene and protein expression studies indicated that the overexpression of COX-1 observed in SHR aorta was reduced by the chronic treatment. These results demonstrate that chronic treatment with 1,25-dihydroxyvitamin D3modulates vascular tone and this modulation is accompanied by a lowered blood pressure, reduced expression of COX-1 mRNA and protein, and reduced ROS level in SHR. The reduction in endothelium-dependent contractions does not involve the surge in endothelial cytosolic calcium concentration that initiates the contractions.


1988 ◽  
Vol 255 (3) ◽  
pp. E338-E346 ◽  
Author(s):  
R. E. Kramer

Studies were conducted to examine the effects of angiotensin II on cytosolic free calcium concentration in bovine adrenal glomerulosa cells maintained in primary culture. The calcium indicator, fura-2, and discontinuous dual-wavelength fluorescence spectroscopy were used to measure cytosolic free calcium in superfused adherent cell monolayers. Basal cytosolic free calcium concentration was 63.7 +/- 3.3 nM. The threshold concentration for angiotensin II-stimulated increases in cytosolic calcium was 10(-14)-10(-13) M, and maximal elevation of cytosolic calcium was produced by 10(-9) M angiotensin II. Angiotensin II (10(-13) M) produced a gradual increase in cytosolic calcium concentration that plateaued after 3-5 min of superfusion at a level approximately 1.2 times that of control cells. The calcium signal invoked by a maximal concentration (10(-9) M) of angiotensin II, in contrast, was characterized by an immediate, intense (approximately 8-fold) increase in cytosolic calcium concentration that decayed within 5 min to a lower, but sustained, level 2.5-3 times that of control cells. The calcium signals invoked by intermediate concentrations (10(-12)-10(-10) M) of angiotensin II exhibited dose-dependent increases in magnitude and a gradual transition in nature between those invoked by threshold and maximal concentrations of the peptide. The effect of angiotensin II to increase cytosolic calcium concentration was accompanied by an increase in aldosterone output. The increase in steroidogenesis was most closely correlated with the magnitude of the initial calcium signal. At high concentrations (10(-10) and 10(-9) M) of angiotensin II, there was a clear dissociation between aldosterone output and the magnitude of the sustained calcium signal.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 253 (2) ◽  
pp. F328-F332 ◽  
Author(s):  
M. A. Burnatowska-Hledin ◽  
W. S. Spielman

We examined the effects of arginine vasopressin (AVP), parathyroid hormone (PTH), and bradykinin (BK) on the cytosolic free calcium concentration ([Ca]i) in cultured LLC-PK1 and MDCK kidney cell lines by use of the fluorescent Ca chelator fura-2. In LLC-PK1 cells, the addition of AVP but not [1-desamino-8-D-arginine]vasopressin (dDAVP, V2 agonist), PTH, or BK (10(-6) M) caused a significant increase in [Ca]i. The AVP-induced increase in [Ca]i from 61 +/- 6 to 225 +/- 44 nM (n = 7, P less than 0.01) was rapid and transient, returning to base line in 2 to 3 min. The effect of AVP was dose dependent and was present at 1 (61% increase) but not 5 min after extracellular Ca was removed. The effect of 10(-6) M AVP could be blocked with the pressor (V1) antagonist, d(CH2)5Tyr(Me)AVP, but not dDAVP. In MDCK cells, BK, but not AVP and PTH, increased [Ca]i from 146 +/- 11 to 281 +/- 31 nM (n = 9, P less than 0.001). The removal of extracellular Ca (5 min), reduced but did not abolish this effect. These results indicate that [Ca]i mobilized by activation of V1-receptors may mediate AVP-regulated function in some transporting epithelia.


Sign in / Sign up

Export Citation Format

Share Document