Antioxidant MCI-186 inhibits mitochondrial permeability transition pore and upregulates Bcl-2 expression

2003 ◽  
Vol 285 (5) ◽  
pp. H2171-H2178 ◽  
Author(s):  
Katare Gopalrao Rajesh ◽  
Shiro Sasaguri ◽  
Ryoko Suzuki ◽  
Hironori Maeda

Reperfusion after a period of ischemia is associated with the formation of reactive oxygen species (ROS) and Ca2+ overload resulting in the opening of a nonspecific pore in the inner membrane of the mitochondria, called the mitochondrial permeability transition pore (PTP), leading to cell damage. Although endogenous antioxidants are activated because of oxidative stress following ischemia, their levels are not high enough to prevent reperfusion injury. Hence there is always a need for exogenous supplement of antioxidants, especially after acute ischemia. Here we demonstrated the effects of the antioxidant 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186) in preventing reperfusion injury of the heart by inhibition of PTP opening. Ischemia (30 min) by left coronary artery (LCA) occlusion and reperfusion (120 min) in Wistar rats after pretreatment with MCI-186 (10 mg/kg iv) infusion starting from 30 min before LCA occlusion resulted in 1) less area of myocardial infarction (19.2% vs. 61.6%), 2) well-maintained myocardial ATP content ( P < 0.03 vs. control), 3) decreased mitochondrial swelling and reduced cytochrome c release, 4) increased expression of BCl-2, 5) lower prevalence of apoptotic cells (14.3% vs. 2.9%), and 6) reduced DNA fragmentation in the MCI-186-treated group. These cytoprotective effects of MCI-186 were inhibited on opening PTP before MCI-186 treatment with the PTP activators lonidamine (10 mg/kg iv) or atractyloside (5 mg/kg iv) but failed to inhibit the protective effects exerted by another antioxidant, allopurinol, suggesting that the PTP inhibiting property is specific for MCI-186. These results demonstrate that the radical scavenger MCI-186, by inhibiting the opening of the PTP, prevents necrosis and cytochrome c release and hence pathological apoptosis.

1998 ◽  
Vol 143 (1) ◽  
pp. 217-224 ◽  
Author(s):  
Robert Eskes ◽  
Bruno Antonsson ◽  
Astrid Osen-Sand ◽  
Sylvie Montessuit ◽  
Christoph Richter ◽  
...  

Bcl-2 family members either promote or repress programmed cell death. Bax, a death-promoting member, is a pore-forming, mitochondria-associated protein whose mechanism of action is still unknown. During apoptosis, cytochrome C is released from the mitochondria into the cytosol where it binds to APAF-1, a mammalian homologue of Ced-4, and participates in the activation of caspases. The release of cytochrome C has been postulated to be a consequence of the opening of the mitochondrial permeability transition pore (PTP). We now report that Bax is sufficient to trigger the release of cytochrome C from isolated mitochondria. This pathway is distinct from the previously described calcium-inducible, cyclosporin A–sensitive PTP. Rather, the cytochrome C release induced by Bax is facilitated by Mg2+ and cannot be blocked by PTP inhibitors. These results strongly suggest the existence of two distinct mechanisms leading to cytochrome C release: one stimulated by calcium and inhibited by cyclosporin A, the other Bax dependent, Mg2+ sensitive but cyclosporin insensitive.


2009 ◽  
Vol 297 (4) ◽  
pp. H1487-H1493 ◽  
Author(s):  
Giuseppe Petrosillo ◽  
Giuseppe Colantuono ◽  
Nicola Moro ◽  
Francesca M. Ruggiero ◽  
Edy Tiravanti ◽  
...  

Melatonin, a well-known antioxidant, has been shown to protect against ischemia-reperfusion myocardial damage. Mitochondrial permeability transition pore (MPTP) opening is an important event in cardiomyocyte cell death occurring during ischemia-reperfusion and therefore a possible target for cardioprotection. In the present study, we tested the hypothesis that melatonin could protect heart against ischemia-reperfusion injury by inhibiting MPTP opening. Isolated perfused rat hearts were subjected to global ischemia and reperfusion in the presence or absence of melatonin in a Langerdoff apparatus. Melatonin treatment significantly improves the functional recovery of Langerdoff hearts on reperfusion, reduces the infarct size, and decreases necrotic damage as shown by the reduced release of lactate dehydrogenase. Mitochondria isolated from melatonin-treated hearts are less sensitive than mitochondria from reperfused hearts to MPTP opening as demonstrated by their higher resistance to Ca2+. Similar results were obtained following treatment of ischemic-reperfused rat heart with cyclosporine A, a known inhibitor of MPTP opening. In addition, melatonin prevents mitochondrial NAD+ release and mitochondrial cytochrome c release and, as previously shown, cardiolipin oxidation associated with ischemia-reperfusion. Together, these results demonstrate that melatonin protects heart from reperfusion injury by inhibiting MPTP opening, probably via prevention of cardiolipin peroxidation.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Jinkun Xi ◽  
Huihua Wang ◽  
Guillaume Chanoit ◽  
Guang Cheng ◽  
Robert A Mueller ◽  
...  

Although resveratrol has been demonstrated to be cardioprotective, the detailed cellular and molecular mechanisms that mediate the protection remain elusive. We aimed to determine if resveratrol protects the heart at reperfusion by modulating the mitochondrial permeability transition pore (mPTP) opening through glycogen synthase kinase 3β (GSK-3β). Resveratrol (10μM) given at reperfusion reduced infarct size (12.2 ± 2.5 % of risk zone vs. 37.9 ± 3.1 % of risk zone in control, n = 6) in isolated rat hearts subjected to 30 min regional ischemia followed by 2 h of reperfusion, an effect that was abrogated by the mPTP opener atractyloside (30.9 ± 8.1 % of risk zone), implying that resveratrol may protect the heart at reperfusion by modulating the mPTP opening. To define the signaling mechanism underlying the action of resveratrol, we determined GSK-3β activity by measuring its phosphorylation at Ser 9 . Resveratrol significantly enhanced GSK-3β phosphorylation upon reperfusion (225.2 ± 30.0 % of control at 5 min of reperfusion). Further experiments showed that resveratrol induces translocation of GSK-3β to mitochondria and translocated GSK-3β interacts with the mPTP component cyclophilin D but not VDAC (the voltage-dependent anion channel) or ANT (the adenine nucleotide translocator) in cardiac mitochondria. Taken together, these data suggest that resveratrol prevents myocardial reperfusion injury by targeting the mPTP opening via GSK-3β. Translocation of GSK-3β to mitochondria and its interaction with the mPTP component cyclophilin D may serve as an essential mechanism that mediates the protective effect of resveratrol on reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document