Blunted muscle vasodilatation during chemoreceptor stimulation in patients with heart failure

2007 ◽  
Vol 293 (1) ◽  
pp. H846-H852 ◽  
Author(s):  
Andrea Di Vanna ◽  
Ana Maria F. W. Braga ◽  
Mateus C. Laterza ◽  
Linda M. Ueno ◽  
Maria Urbana P. B. Rondon ◽  
...  

Chemoreflex control of sympathetic nerve activity is exaggerated in heart failure (HF) patients. However, the vascular implications of the augmented sympathetic activity during chemoreceptor activation in patients with HF are unknown. We tested the hypothesis that the muscle blood flow responses during peripheral and central chemoreflex stimulation would be blunted in patients with HF. Sixteen patients with HF (49 ± 3 years old, Functional Class II-III, New York Heart Association) and 11 age-paired normal controls were studied. The peripheral chemoreflex control was evaluated by inhalation of 10% O2 and 90% N2 for 3 min. The central chemoreflex control was evaluated by inhalation of 7% CO2 and 93% O2 for 3 min. Muscle sympathetic nerve activity (MSNA) was directly evaluated by microneurography. Forearm blood flow was evaluated by venous occlusion plethysmography. Baseline MSNA were significantly greater in HF patients (33 ± 3 vs. 20 ± 2 bursts/min, P = 0.001). Forearm vascular conductance (FVC) was not different between the groups. During hypoxia, the increase in MSNA was significantly greater in HF patients than in normal controls (9.0 ± 1.6 vs. 0.8 ± 2.0 bursts/min, P = 0.001). The increase in FVC was significantly lower in HF patients (0.00 ± 0.10 vs. 0.76 ± 0.25 units, P = 0.001). During hypercapnia, MSNA responses were significantly greater in HF patients than in normal controls (13.9 ± 3.2 vs. 2.1 ± 1.9 bursts/min, P = 0.001). FVC responses were significantly lower in HF patients (−0.29 ± 0.10 vs. 0.37 ± 0.18 units, P = 0.001). In conclusion, muscle vasodilatation during peripheral and central chemoreceptor stimulation is blunted in HF patients. This vascular response seems to be explained, at least in part, by the exaggerated MSNA responses during hypoxia and hypercapnia.

2009 ◽  
Vol 12 (1) ◽  
pp. 58-65 ◽  
Author(s):  
Ligia M. Antunes-Correa ◽  
Ruth C. Melo ◽  
Thais S. Nobre ◽  
Linda M. Ueno ◽  
Fabio G.M. Franco ◽  
...  

1993 ◽  
Vol 75 (6) ◽  
pp. 2450-2455 ◽  
Author(s):  
M. J. Joyner ◽  
W. Wieling

This study sought to determine whether increasing blood flow to active muscles can blunt the normal rise in muscle sympathetic nerve activity (MSNA) during heavy rhythmic forearm exercise in humans. Subjects performed 5- to 6-min exercise bouts of handgripping (30/min) at 40–50% of maximum voluntary contraction (MVC). Blood flow was increased by application of suction (50 mmHg) around the forearm. Suction increased deep venous oxygen saturation in blood draining the forearm from 34 +/- 4 to 45 +/- 4%, indicating that muscle blood flow had risen by approximately 20%. Suction had no impact on the heart rate, perceived exertion, or electromyographic responses to the handgripping. During 6 min of exercise at 50% of MVC, MSNA rose from 376 +/- 67 to 970 +/- 125 units during the control trial vs. 396 +/- 69 to 729 +/- 94 units during the suction trial, and the difference was maintained during 2 min of postexercise ischemia (P < 0.05; suction < control). Mean arterial pressure (MAP) rose from 99 +/- 4 to 129 +/- 6 mmHg during control vs. 99 +/- 4 to 126 +/- 6 mmHg during the suction trial, and these responses were only different (P < 0.05; suction < control) during the final minute of the exercise bouts. During postexercise ichemia, MAP was 122 +/- 6 mmHg after the control trial but was only 112 +/- 4 mmHg after the suction trial. These results indicate that forearm suction augmented muscle blood flow, limited the activation of chemosensitive muscle afferents, and blunted the rise in MSNA during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)


2010 ◽  
Vol 108 (5) ◽  
pp. 1234-1240 ◽  
Author(s):  
Raman Moradkhan ◽  
Brett Spitnale ◽  
Patrick McQuillan ◽  
Cynthia Hogeman ◽  
Kristen S. Gray ◽  
...  

Obstructive sleep apnea (OSA) is associated with increased sympathetic nerve activity, endothelial dysfunction, and premature cardiovascular disease. To determine whether hypoxia is associated with impaired skeletal muscle vasodilation, we compared femoral artery blood flow (ultrasound) and muscle sympathetic nerve activity (peroneal microneurography) during exposure to acute systemic hypoxia (fraction of inspired oxygen 0.1) in awake patients with OSA ( n = 10) and controls ( n = 8). To assess the role of elevated sympathetic nerve activity, in a separate group of patients with OSA ( n = 10) and controls ( n = 10) we measured brachial artery blood flow during hypoxia before and after regional α-adrenergic block with phentolamine. Despite elevated sympathetic activity, in OSA the vascular responses to hypoxia in the leg did not differ significantly from those in controls [ P = not significant (NS)]. Following regional phentolamine, in both groups the hypoxia-induced increase in brachial blood flow was markedly enhanced (OSA pre vs. post, 84 ± 13 vs. 201 ± 34 ml/min, P < 0.002; controls pre vs. post 62 ± 8 vs. 140 ± 26 ml/min, P < 0.01). At end hypoxia after phentolamine, the increase of brachial blood flow above baseline was similar (OSA vs. controls +61 ± 16 vs. +48 ± 6%; P = NS). We conclude that despite high sympathetic vasoconstrictor tone and prominent sympathetic responses to acute hypoxia, hypoxia-induced limb vasodilation is preserved in OSA.


Sign in / Sign up

Export Citation Format

Share Document