scholarly journals ASIC1a plays a key role in evoking the metabolic component of the exercise pressor reflex in rats

2020 ◽  
Vol 318 (1) ◽  
pp. H78-H89 ◽  
Author(s):  
Guillaume P. Ducrocq ◽  
Joyce S. Kim ◽  
Juan A. Estrada ◽  
Marc P. Kaufman

The role of the acid-sensing ion channel 1a (ASIC1a) in evoking the exercise pressor reflex is unknown, despite the fact that ASIC1a is opened by decreases in pH in the physiological range. This fact prompted us to test the hypothesis that ASIC1a plays an important role in evoking the exercise pressor reflex in decerebrated rats with freely perfused hindlimb muscles. To test this hypothesis, we measured the effect of injecting two ASIC1a blockers into the arterial supply of the triceps surae muscles on the reflex pressor responses to four maneuvers, namely 1) static contraction of the triceps surae muscles (i.e., the exercise pressor reflex), 2) calcaneal tendon stretch, 3) intra-arterial injection of lactic acid, and 4) intra-arterial injection of diprotonated phosphate. We found that the 2 ASIC1a blockers, psalmotoxin-1 (200 ng/kg) and mambalgin-1 (6.5 μg/kg), decreased the pressor responses to static contraction as well as the peak pressor responses to injection of lactic acid and diprotonated phosphate. In contrast, neither ASIC1a blocker had any effect on the pressor responses to tendon stretch. Importantly, we found that ASIC1a blockade significantly decreased the pressor response to static contraction after a latency of at least 8 s. Our results support the hypothesis that ASIC1a plays a key role in evoking the metabolic component of the exercise pressor reflex. NEW & NOTEWORTHY The role played by acid-sensing ion channel 1a (ASIC1a) in evoking the exercise pressor reflex remains unknown. In decerebrated rats with freely perfused femoral arteries, blocking ASIC1a with psalmotoxin-1 or mambalgin-1 significantly attenuated the pressor response to static contraction, lactic acid, and diprotonated phosphate injection but had no effect on the pressor response to stretch. We conclude that ASIC1a plays a key role in evoking the exercise pressor reflex by responding to contraction-induced metabolites, such as protons.

2009 ◽  
Vol 297 (1) ◽  
pp. H443-H449 ◽  
Author(s):  
Jennifer L. McCord ◽  
Hirotsugu Tsuchimochi ◽  
Marc P. Kaufman

The exercise pressor reflex is evoked by both mechanical and metabolic stimuli arising in contracting skeletal muscle. Recently, the blockade of acid-sensing ion channels (ASICs) with amiloride and A-316567 attenuated the reflex. Moreover, amiloride had no effect on the mechanoreceptor component of the reflex, prompting us to determine whether ASICs contributed to the metaboreceptor component of the exercise pressor reflex. The metaboreceptor component can be assessed by measuring mean arterial pressure during postcontraction circulatory occlusion when only the metaboreceptors are stimulated. We examined the effects of amiloride (0.5 μg/kg), A-317567 (10 mM, 0.5 ml), and saline (0.5 ml) on the pressor response to and after static contraction while the circulation was occluded in 30 decerebrated cats. Amiloride ( n = 11) and A-317567 ( n = 7), injected into the arterial supply of the triceps surae muscles, attenuated the pressor responses both to contraction while the circulation was occluded and to postcontraction circulatory occlusion (all, P < 0.05). Saline ( n = 11), however, had no effect on the pressor responses to contraction while the circulation was occluded or to postcontraction circulatory occlusion (both, P > 0.79). Our findings led us to conclude that ASICs contribute to the metaboreceptor component of the exercise pressor reflex.


2001 ◽  
Vol 280 (5) ◽  
pp. H2153-H2161 ◽  
Author(s):  
Shawn G. Hayes ◽  
Marc P. Kaufman

The exercise pressor reflex, which arises from the contraction-induced stimulation of group III and IV muscle afferents, is widely believed to be evoked by metabolic stimuli signaling a mismatch between blood/oxygen demand and supply in the working muscles. Nevertheless, mechanical stimuli may also play a role in evoking the exercise pressor reflex. To determine this role, we examined the effect of gadolinium, which blocks mechanosensitive channels, on the exercise pressor reflex in both decerebrate and α-chloralose-anesthetized cats. We found that gadolinium (10 mM; 1 ml) injected into the femoral artery significantly attenuated the reflex pressor responses to static contraction of the triceps surae muscles and to stretch of the calcaneal (Achilles) tendon. In contrast, gadolinium had no effect on the reflex pressor response to femoral arterial injection of capsaicin (5 μg). In addition, gadolinium significantly attenuated the responses of group III muscle afferents, many of which are mechanically sensitive, to both static contraction and to tendon stretch. Gadolinium, however, had no effect on the responses of group IV muscle afferents, many of which are metabolically sensitive, to either static contraction or to capsaicin injection. We conclude that mechanical stimuli arising in contracting skeletal muscles contribute to the elicitation of the exercise pressor reflex.


2003 ◽  
Vol 94 (4) ◽  
pp. 1437-1445 ◽  
Author(s):  
Ramy L. Hanna ◽  
Marc P. Kaufman

The exercise pressor reflex is believed to be evoked, in part, by multiple metabolic stimuli that are generated when blood supply to exercising muscles is inadequate to meet metabolic demand. Recently, ATP, which is a P2 receptor agonist, has been suggested to be one of the metabolic stimuli evoking this reflex. We therefore tested the hypothesis that blockade of P2 receptors within contracting skeletal muscle attenuated the exercise pressor reflex in decerebrate cats. We found that popliteal arterial injection of pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS; 10 mg/kg), a P2 receptor antagonist, attenuated the pressor response to static contraction of the triceps surae muscles. Specifically, the pressor response to contraction before PPADS averaged 36 ± 3 mmHg, whereas afterward it averaged 14 ± 3 mmHg ( P < 0.001; n = 19). In addition, PPADS attenuated the pressor response to postcontraction circulatory occlusion ( P < 0.01; n = 11). In contrast, popliteal arterial injection of CGS-15943 (250 μg/kg), a P1 receptor antagonist, had no effect on the pressor response to static contraction of the triceps surae muscles. In addition, popliteal arterial injection of PPADS but not CGS-15943 attenuated the pressor response to stretch of the calcaneal (Achilles) tendon. We conclude that P2 receptors on the endings of thin fiber muscle afferents play a role in evoking both the metabolic and mechanoreceptor components of the exercise pressor reflex.


2005 ◽  
Vol 288 (4) ◽  
pp. H1867-H1873 ◽  
Author(s):  
Angela E. Kindig ◽  
Todd B. Heller ◽  
Marc P. Kaufman

Vanilloid type 1 (VR-1) receptors are stimulated by capsaicin and hydrogen ions, the latter being a by-product of muscular contraction. We tested the hypothesis that activation of VR-1 receptors during static contraction contributes to the exercise pressor reflex. We established a dose of iodoresinaferatoxin (IRTX), a VR-1 receptor antagonist, that blocked the pressor response to capsaicin injected into the arterial supply of muscle. Specifically, in eight decerebrated cats, we compared pressor responses to capsaicin (10 μg) injected into the right popliteal artery, which was subsequently injected with IRTX (100 μg), with those to capsaicin injected into the left popliteal artery, which was not injected with IRTX. The pressor response to capsaicin injected into the right popliteal artery averaged 49 ± 9 mmHg before IRTX and 9 ± 2 mmHg after IRTX ( P < 0.05). In contrast, the pressor response to capsaicin injected into the left popliteal artery averaged 46 ± 10 mmHg “before” and 43 ± 6 mmHg “after” ( P > 0.05). We next determined whether VR-1 receptors mediated the pressor response to contraction of the triceps surae. During contraction without circulatory occlusion, the pressor response before IRTX (100 μg) averaged 26 ± 3 mmHg, whereas it averaged 22 ± 3 mmHg ( P > 0.05) after IRTX ( n = 8). In addition, during contraction with occlusion, the pressor responses averaged 35 ± 3 mmHg before IRTX injection and 49 ± 7 mmHg after IRTX injection ( n = 7). We conclude that VR-1 receptors play little role in evoking the exercise pressor reflex.


2008 ◽  
Vol 295 (3) ◽  
pp. H1017-H1024 ◽  
Author(s):  
Jennifer L. McCord ◽  
Shawn G. Hayes ◽  
Marc P. Kaufman

Amiloride, injected into the popliteal artery, has been reported to attenuate the reflex pressor response to static contraction of the triceps surae muscles. Both mechanical and metabolic stimuli arising in contracting skeletal muscle are believed to evoke this effect, which has been named the exercise pressor reflex. Amiloride blocks both acid-sensing ion channels, as well as epithelial sodium channels. Nevertheless, amiloride is thought to block the metabolic stimulus to the reflex, because this agent has been shown to attenuate the reflex pressor response to injection of lactic acid into the arterial supply of skeletal muscle. The possibility exists, however, that amiloride may also block mechanical stimuli evoking the exercise pressor reflex. The mechanical component of the reflex can be assessed by measuring renal sympathetic nerve activity during the first 2–5 s of contraction. During this period of time, the sudden tension developed by contraction onset briskly discharges mechanoreceptors, whereas it has little effect on the discharge of metaboreceptors. We, therefore, examined the effect of amiloride (0.5 μg/kg) injected into the popliteal artery on the renal sympathetic and pressor responses to static contraction of the triceps surae muscles in decerebrated cats. We found that amiloride significantly attenuated the pressor and renal sympathetic responses to contraction; for the latter variable, the attenuation started 10 s after the onset of contraction. Our findings lead us to conclude that acid-sensing ion channels and epithelial sodium channels play little, if any, role in evoking the mechanical component of the exercise pressor reflex.


2002 ◽  
Vol 92 (4) ◽  
pp. 1635-1641 ◽  
Author(s):  
Shawn G. Hayes ◽  
Nicolas B. Moya Del Pino ◽  
Marc P. Kaufman

Static exercise is well known to increase heart rate, arterial blood pressure, and ventilation. These increases appear to be less in women than in men, a difference that has been attributed to an effect of estrogen on neuronal function. In decerebrate male cats, we examined the effect of estrogen (17β-estradiol; 0.001, 0.01, 0.1, and 1.0 μg/kg iv) on the cardiovascular and ventilatory responses to central command and the exercise pressor reflex, the two neural mechanisms responsible for evoking the autonomic and ventilatory responses to exercise. We found that 17β-estradiol, in each of the three doses tested, attenuated the pressor, cardioaccelerator, and phrenic nerve responses to electrical stimulation of the mesencephalic locomotor region (i.e., central command). In contrast, none of the doses of 17β-estradiol had any effect on the pressor, cardioaccelerator, and ventilatory responses to static contraction or stretch of the triceps surae muscles. We conclude that, in decerebrate male cats, estrogen injected intravenously attenuates cardiovascular and ventilatory responses to central command but has no effect on responses to the exercise pressor reflex.


2002 ◽  
Vol 283 (3) ◽  
pp. H1012-H1018 ◽  
Author(s):  
Jianhua Li ◽  
Jere H. Mitchell

Static contraction of hindlimb skeletal muscle in cats induces a reflex pressor response. The superficial dorsal horn of the spinal cord is the major site of the first synapse of this reflex. In this study, static contraction of the triceps surae muscle was evoked by electrical stimulation of the tibial nerve for 2 min in anesthetized cats (stimulus parameters: two times motor threshold at 30 Hz, 0.025-ms duration). Ten stimulations were performed and 1-min rest was allowed between stimulations. Muscle contraction caused a maximal increase of 32 ± 5 mmHg in mean arterial pressure (MAP), which was obtained from the first three contractions. Activated neurons in the superficial dorsal horn were identified by c-Fos protein. Distinct c-Fos expression was present in the L6-S1 level of the superficial dorsal horn ipsilateral to the contracting leg (88 ± 14 labeled cells per section at L7), whereas only scattered c-Fos expression was observed in the contralateral superficial dorsal horn (9 ± 2 labeled cells per section, P < 0.05 compared with ipsilateral section). A few c-Fos-labeled cells were found in control animals (12 ± 5 labeled cells per section, P < 0.05 compared with stimulated cats). Furthermore, double-labeling methods demonstrated that c-Fos protein coexisted with nitric oxide (NO) synthase (NOS) positive staining in the superficial dorsal horn. Finally, an intrathecal injection of an inhibitor of NOS, N-nitro-l-arginine methyl ester (5 mM), resulted in fewer c-Fos-labeled cells (58 ± 12 labeled cells per section) and a reduced maximal MAP response (20 ± 3 mmHg, P < 0.05). These results suggest that the exercise pressor reflex induced by static contraction is mediated by activation of neurons in the superficial dorsal horn and that formation of NO in this region is involved in modulating the activated neurons and the pressor response to contraction.


2002 ◽  
Vol 92 (4) ◽  
pp. 1628-1634 ◽  
Author(s):  
Shawn G. Hayes ◽  
Marc P. Kaufman

Although mesencephalic locomotor region (MLR) stimulation and the exercise pressor reflex have been shown to increase whole nerve renal sympathetic activity, it is not known whether these mechanisms converge onto the same population of renal sympathetic postganglionic efferents. In decerebrate cats, we examined the responses of single renal sympathetic postganglionic efferents to stimulation of the MLR and the exercise pressor reflex (i.e., static contraction of the triceps surae muscles). We found that, in most instances (24 of 28 fibers), either MLR stimulation or the muscle reflex, but not both, increased the discharge of renal postganglionic sympathetic efferents. In addition, we found that renal sympathetic efferents that responded to static contraction while the muscles were freely perfused responded more vigorously to static contraction during circulatory arrest. Moreover, stretch of the calcaneal (Achilles) tendon stimulated the same renal sympathetic efferents as did static contraction. These findings suggest that MLR stimulation and the exercise pressor reflex do not converge onto the same renal sympathetic postganglionic efferents.


2010 ◽  
Vol 109 (5) ◽  
pp. 1416-1423 ◽  
Author(s):  
Jennifer L. McCord ◽  
Hirotsugu Tsuchimochi ◽  
Marc P. Kaufman

The exercise pressor reflex is due to activation of thin fiber afferents within contracting muscle. These afferents are in part stimulated by ATP activation of purinergic 2X (P2X) receptors during contraction. Which of the P2X receptors contribute to the reflex is unknown; however, P2X2/3 and P2X3 receptor subtypes are good candidates because they are located on thin fiber afferents and are involved in sensory neurotransmission. To determine if P2X2/3 and P2X3 receptors evoke the metabolic component of the exercise pressor reflex, we examined the effect of two P2X2/3 and P2X3 antagonists, A-317491 (10 mg/kg) and RO-3 (10 mg/kg), on the pressor response to injections of α,β-methylene ATP (α,β-MeATP; 50 μg/kg), freely perfused static contraction, contraction of the triceps surae muscles while the circulation was occluded, and postcontraction circulatory occlusion in decerebrate cats. We found that the antagonists reduced the pressor response to α,β-MeATP injection (before Δ 20 ± 3 mmHg; drug Δ 11 ± 3 mmHg; P < 0.05), suggesting the antagonists were effective in blocking P2X2/3 and P2X3 receptors. P2X2/3 and P2X3 receptor blockade reduced the pressor response to freely perfused contraction (before Δ 33 ± 5 mmHg; drug Δ 15 ± 5 mmHg; P < 0.05), contraction with the circulation occluded (before Δ 52 ± 7 mmHg; drug Δ 20 ± 4 mmHg; P < 0.05), and during postcontraction circulatory occlusion (before Δ 15 ± 1 mmHg; drug Δ 5 ± 1 mmHg; P < 0.05). Our findings suggest that P2X2/3 and P2X3 receptors contribute to the metabolic component of the exercise pressor reflex in decerebrate cats.


2008 ◽  
Vol 295 (4) ◽  
pp. H1720-H1725 ◽  
Author(s):  
Shawn G. Hayes ◽  
Jennifer L. McCord ◽  
Jon Rainier ◽  
Zhuqing Liu ◽  
Marc P. Kaufman

The exercise pressor reflex arises from contracting skeletal muscle and is believed to play a role in evoking the cardiovascular responses to static exercise, effects that include increases in arterial pressure and heart rate. This reflex is believed to be evoked by the metabolic and mechanical stimulation of thin fiber muscle afferents. Lactic acid is known to be an important metabolic stimulus evoking the reflex. Until recently, the only antagonist for acid-sensitive ion channels (ASICs), the receptors to lactic acid, was amiloride, a substance that is also a potent antagonist for both epithelial sodium channels as well as voltage-gated sodium channels. Recently, a second compound, A-317567, has been shown to be an effective and selective antagonist to ASICs in vitro. Consequently, we measured the pressor responses to the static contraction of the triceps surae muscles in decerebrate cats before and after a popliteal arterial injection of A-317567 (10 mM solution; 0.5 ml). We found that this ASIC antagonist significantly attenuated by half ( P < 0.05) the pressor responses to both contraction and to lactic acid injection into the popliteal artery. In contrast, A-317567 had no effect on the pressor responses to tendon stretch, a pure mechanical stimulus, and to a popliteal arterial injection of capsaicin, which stimulated transient receptor potential vanilloid type 1 channels. We conclude that ASICs on thin fiber muscle afferents play a substantial role in evoking the metabolic component of the exercise pressor reflex.


Sign in / Sign up

Export Citation Format

Share Document