VR-1 receptor blockade attenuates the pressor response to capsaicin but has no effect on the pressor response to contraction in cats

2005 ◽  
Vol 288 (4) ◽  
pp. H1867-H1873 ◽  
Author(s):  
Angela E. Kindig ◽  
Todd B. Heller ◽  
Marc P. Kaufman

Vanilloid type 1 (VR-1) receptors are stimulated by capsaicin and hydrogen ions, the latter being a by-product of muscular contraction. We tested the hypothesis that activation of VR-1 receptors during static contraction contributes to the exercise pressor reflex. We established a dose of iodoresinaferatoxin (IRTX), a VR-1 receptor antagonist, that blocked the pressor response to capsaicin injected into the arterial supply of muscle. Specifically, in eight decerebrated cats, we compared pressor responses to capsaicin (10 μg) injected into the right popliteal artery, which was subsequently injected with IRTX (100 μg), with those to capsaicin injected into the left popliteal artery, which was not injected with IRTX. The pressor response to capsaicin injected into the right popliteal artery averaged 49 ± 9 mmHg before IRTX and 9 ± 2 mmHg after IRTX ( P < 0.05). In contrast, the pressor response to capsaicin injected into the left popliteal artery averaged 46 ± 10 mmHg “before” and 43 ± 6 mmHg “after” ( P > 0.05). We next determined whether VR-1 receptors mediated the pressor response to contraction of the triceps surae. During contraction without circulatory occlusion, the pressor response before IRTX (100 μg) averaged 26 ± 3 mmHg, whereas it averaged 22 ± 3 mmHg ( P > 0.05) after IRTX ( n = 8). In addition, during contraction with occlusion, the pressor responses averaged 35 ± 3 mmHg before IRTX injection and 49 ± 7 mmHg after IRTX injection ( n = 7). We conclude that VR-1 receptors play little role in evoking the exercise pressor reflex.

2009 ◽  
Vol 297 (1) ◽  
pp. H443-H449 ◽  
Author(s):  
Jennifer L. McCord ◽  
Hirotsugu Tsuchimochi ◽  
Marc P. Kaufman

The exercise pressor reflex is evoked by both mechanical and metabolic stimuli arising in contracting skeletal muscle. Recently, the blockade of acid-sensing ion channels (ASICs) with amiloride and A-316567 attenuated the reflex. Moreover, amiloride had no effect on the mechanoreceptor component of the reflex, prompting us to determine whether ASICs contributed to the metaboreceptor component of the exercise pressor reflex. The metaboreceptor component can be assessed by measuring mean arterial pressure during postcontraction circulatory occlusion when only the metaboreceptors are stimulated. We examined the effects of amiloride (0.5 μg/kg), A-317567 (10 mM, 0.5 ml), and saline (0.5 ml) on the pressor response to and after static contraction while the circulation was occluded in 30 decerebrated cats. Amiloride ( n = 11) and A-317567 ( n = 7), injected into the arterial supply of the triceps surae muscles, attenuated the pressor responses both to contraction while the circulation was occluded and to postcontraction circulatory occlusion (all, P < 0.05). Saline ( n = 11), however, had no effect on the pressor responses to contraction while the circulation was occluded or to postcontraction circulatory occlusion (both, P > 0.79). Our findings led us to conclude that ASICs contribute to the metaboreceptor component of the exercise pressor reflex.


2020 ◽  
Vol 318 (1) ◽  
pp. H78-H89 ◽  
Author(s):  
Guillaume P. Ducrocq ◽  
Joyce S. Kim ◽  
Juan A. Estrada ◽  
Marc P. Kaufman

The role of the acid-sensing ion channel 1a (ASIC1a) in evoking the exercise pressor reflex is unknown, despite the fact that ASIC1a is opened by decreases in pH in the physiological range. This fact prompted us to test the hypothesis that ASIC1a plays an important role in evoking the exercise pressor reflex in decerebrated rats with freely perfused hindlimb muscles. To test this hypothesis, we measured the effect of injecting two ASIC1a blockers into the arterial supply of the triceps surae muscles on the reflex pressor responses to four maneuvers, namely 1) static contraction of the triceps surae muscles (i.e., the exercise pressor reflex), 2) calcaneal tendon stretch, 3) intra-arterial injection of lactic acid, and 4) intra-arterial injection of diprotonated phosphate. We found that the 2 ASIC1a blockers, psalmotoxin-1 (200 ng/kg) and mambalgin-1 (6.5 μg/kg), decreased the pressor responses to static contraction as well as the peak pressor responses to injection of lactic acid and diprotonated phosphate. In contrast, neither ASIC1a blocker had any effect on the pressor responses to tendon stretch. Importantly, we found that ASIC1a blockade significantly decreased the pressor response to static contraction after a latency of at least 8 s. Our results support the hypothesis that ASIC1a plays a key role in evoking the metabolic component of the exercise pressor reflex. NEW & NOTEWORTHY The role played by acid-sensing ion channel 1a (ASIC1a) in evoking the exercise pressor reflex remains unknown. In decerebrated rats with freely perfused femoral arteries, blocking ASIC1a with psalmotoxin-1 or mambalgin-1 significantly attenuated the pressor response to static contraction, lactic acid, and diprotonated phosphate injection but had no effect on the pressor response to stretch. We conclude that ASIC1a plays a key role in evoking the exercise pressor reflex by responding to contraction-induced metabolites, such as protons.


2001 ◽  
Vol 280 (5) ◽  
pp. H2153-H2161 ◽  
Author(s):  
Shawn G. Hayes ◽  
Marc P. Kaufman

The exercise pressor reflex, which arises from the contraction-induced stimulation of group III and IV muscle afferents, is widely believed to be evoked by metabolic stimuli signaling a mismatch between blood/oxygen demand and supply in the working muscles. Nevertheless, mechanical stimuli may also play a role in evoking the exercise pressor reflex. To determine this role, we examined the effect of gadolinium, which blocks mechanosensitive channels, on the exercise pressor reflex in both decerebrate and α-chloralose-anesthetized cats. We found that gadolinium (10 mM; 1 ml) injected into the femoral artery significantly attenuated the reflex pressor responses to static contraction of the triceps surae muscles and to stretch of the calcaneal (Achilles) tendon. In contrast, gadolinium had no effect on the reflex pressor response to femoral arterial injection of capsaicin (5 μg). In addition, gadolinium significantly attenuated the responses of group III muscle afferents, many of which are mechanically sensitive, to both static contraction and to tendon stretch. Gadolinium, however, had no effect on the responses of group IV muscle afferents, many of which are metabolically sensitive, to either static contraction or to capsaicin injection. We conclude that mechanical stimuli arising in contracting skeletal muscles contribute to the elicitation of the exercise pressor reflex.


2002 ◽  
Vol 283 (3) ◽  
pp. H1012-H1018 ◽  
Author(s):  
Jianhua Li ◽  
Jere H. Mitchell

Static contraction of hindlimb skeletal muscle in cats induces a reflex pressor response. The superficial dorsal horn of the spinal cord is the major site of the first synapse of this reflex. In this study, static contraction of the triceps surae muscle was evoked by electrical stimulation of the tibial nerve for 2 min in anesthetized cats (stimulus parameters: two times motor threshold at 30 Hz, 0.025-ms duration). Ten stimulations were performed and 1-min rest was allowed between stimulations. Muscle contraction caused a maximal increase of 32 ± 5 mmHg in mean arterial pressure (MAP), which was obtained from the first three contractions. Activated neurons in the superficial dorsal horn were identified by c-Fos protein. Distinct c-Fos expression was present in the L6-S1 level of the superficial dorsal horn ipsilateral to the contracting leg (88 ± 14 labeled cells per section at L7), whereas only scattered c-Fos expression was observed in the contralateral superficial dorsal horn (9 ± 2 labeled cells per section, P < 0.05 compared with ipsilateral section). A few c-Fos-labeled cells were found in control animals (12 ± 5 labeled cells per section, P < 0.05 compared with stimulated cats). Furthermore, double-labeling methods demonstrated that c-Fos protein coexisted with nitric oxide (NO) synthase (NOS) positive staining in the superficial dorsal horn. Finally, an intrathecal injection of an inhibitor of NOS, N-nitro-l-arginine methyl ester (5 mM), resulted in fewer c-Fos-labeled cells (58 ± 12 labeled cells per section) and a reduced maximal MAP response (20 ± 3 mmHg, P < 0.05). These results suggest that the exercise pressor reflex induced by static contraction is mediated by activation of neurons in the superficial dorsal horn and that formation of NO in this region is involved in modulating the activated neurons and the pressor response to contraction.


2003 ◽  
Vol 94 (4) ◽  
pp. 1437-1445 ◽  
Author(s):  
Ramy L. Hanna ◽  
Marc P. Kaufman

The exercise pressor reflex is believed to be evoked, in part, by multiple metabolic stimuli that are generated when blood supply to exercising muscles is inadequate to meet metabolic demand. Recently, ATP, which is a P2 receptor agonist, has been suggested to be one of the metabolic stimuli evoking this reflex. We therefore tested the hypothesis that blockade of P2 receptors within contracting skeletal muscle attenuated the exercise pressor reflex in decerebrate cats. We found that popliteal arterial injection of pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS; 10 mg/kg), a P2 receptor antagonist, attenuated the pressor response to static contraction of the triceps surae muscles. Specifically, the pressor response to contraction before PPADS averaged 36 ± 3 mmHg, whereas afterward it averaged 14 ± 3 mmHg ( P < 0.001; n = 19). In addition, PPADS attenuated the pressor response to postcontraction circulatory occlusion ( P < 0.01; n = 11). In contrast, popliteal arterial injection of CGS-15943 (250 μg/kg), a P1 receptor antagonist, had no effect on the pressor response to static contraction of the triceps surae muscles. In addition, popliteal arterial injection of PPADS but not CGS-15943 attenuated the pressor response to stretch of the calcaneal (Achilles) tendon. We conclude that P2 receptors on the endings of thin fiber muscle afferents play a role in evoking both the metabolic and mechanoreceptor components of the exercise pressor reflex.


2008 ◽  
Vol 295 (3) ◽  
pp. H1017-H1024 ◽  
Author(s):  
Jennifer L. McCord ◽  
Shawn G. Hayes ◽  
Marc P. Kaufman

Amiloride, injected into the popliteal artery, has been reported to attenuate the reflex pressor response to static contraction of the triceps surae muscles. Both mechanical and metabolic stimuli arising in contracting skeletal muscle are believed to evoke this effect, which has been named the exercise pressor reflex. Amiloride blocks both acid-sensing ion channels, as well as epithelial sodium channels. Nevertheless, amiloride is thought to block the metabolic stimulus to the reflex, because this agent has been shown to attenuate the reflex pressor response to injection of lactic acid into the arterial supply of skeletal muscle. The possibility exists, however, that amiloride may also block mechanical stimuli evoking the exercise pressor reflex. The mechanical component of the reflex can be assessed by measuring renal sympathetic nerve activity during the first 2–5 s of contraction. During this period of time, the sudden tension developed by contraction onset briskly discharges mechanoreceptors, whereas it has little effect on the discharge of metaboreceptors. We, therefore, examined the effect of amiloride (0.5 μg/kg) injected into the popliteal artery on the renal sympathetic and pressor responses to static contraction of the triceps surae muscles in decerebrated cats. We found that amiloride significantly attenuated the pressor and renal sympathetic responses to contraction; for the latter variable, the attenuation started 10 s after the onset of contraction. Our findings lead us to conclude that acid-sensing ion channels and epithelial sodium channels play little, if any, role in evoking the mechanical component of the exercise pressor reflex.


1987 ◽  
Vol 62 (6) ◽  
pp. 2258-2263
Author(s):  
K. W. McCoy ◽  
D. M. Rotto ◽  
M. P. Kaufman

We have examined the effect of static contraction of the hindlimb muscles on the discharge of aortic chemoreceptors in chloralose-anesthetized cats. The responses of the chemoreceptors to contraction were dependent on the arterial pressure response to this maneuver. When contraction reflexly evoked a pressor response of at least 20 mmHg, the discharge of 26 chemoreceptors was reduced from control levels by 53% (P less than 0.01). The contraction-induced inhibition of chemoreceptor discharge was prevented by phentolamine, an alpha-adrenergic antagonist that also attenuated the contraction-induced pressor response. In addition, the inhibition evoked by contraction was simulated by injection of phenylephrine and inflation of an aortic balloon, both of which evoked pressor responses. However, when contraction failed to significantly change arterial pressure, the discharge of 20 aortic chemoreceptors was not significantly changed from control levels. We conclude that the reflex pressor response to static contraction inhibits the discharge of aortic chemoreceptors. This inhibition of discharge needs to be considered when interpreting the effects of aortic barodenervation on the cardiovascular responses to exercise.


2002 ◽  
Vol 92 (4) ◽  
pp. 1635-1641 ◽  
Author(s):  
Shawn G. Hayes ◽  
Nicolas B. Moya Del Pino ◽  
Marc P. Kaufman

Static exercise is well known to increase heart rate, arterial blood pressure, and ventilation. These increases appear to be less in women than in men, a difference that has been attributed to an effect of estrogen on neuronal function. In decerebrate male cats, we examined the effect of estrogen (17β-estradiol; 0.001, 0.01, 0.1, and 1.0 μg/kg iv) on the cardiovascular and ventilatory responses to central command and the exercise pressor reflex, the two neural mechanisms responsible for evoking the autonomic and ventilatory responses to exercise. We found that 17β-estradiol, in each of the three doses tested, attenuated the pressor, cardioaccelerator, and phrenic nerve responses to electrical stimulation of the mesencephalic locomotor region (i.e., central command). In contrast, none of the doses of 17β-estradiol had any effect on the pressor, cardioaccelerator, and ventilatory responses to static contraction or stretch of the triceps surae muscles. We conclude that, in decerebrate male cats, estrogen injected intravenously attenuates cardiovascular and ventilatory responses to central command but has no effect on responses to the exercise pressor reflex.


2008 ◽  
Vol 295 (5) ◽  
pp. H2043-H2045 ◽  
Author(s):  
Jennifer L. McCord ◽  
Shawn G. Hayes ◽  
Marc P. Kaufman

Pyridoxal-phosphate-6-azophenyl-2′-4-disulfonate (PPADS), a purinergic 2 (P2) receptor antagonist, has been shown to attenuate the exercise pressor reflex in cats. In vitro, however, PPADS has been shown to block the production of prostaglandins, some of which play a role in evoking the exercise pressor reflex. Thus the possibility exists that PPADS blocks the exercise pressor reflex through a reduction in prostaglandin synthesis rather than through the blockade of P2 receptors. Using microdialysis, we collected interstitial fluid from skeletal muscle to determine prostaglandin E2 (PGE2) concentrations during the intermittent contraction of the triceps surae muscle before and after a popliteal arterial injection of PPADS (10 mg/kg). We found that the PGE2 concentration increased in response to the intermittent contraction before and after the injection of PPADS (both, P < 0.05). PPADS reduced the pressor response to exercise ( P < 0.05) but had no effect on the magnitude of PGE2 production during contraction ( P = 0.48). These experiments demonstrate that PPADS does not block the exercise pressor reflex through a reduction in PGE2 synthesis. We suggest that PGE2 and P2 receptors play independent roles in stimulating the exercise pressor reflex.


1994 ◽  
Vol 267 (4) ◽  
pp. R909-R915 ◽  
Author(s):  
C. L. Stebbins ◽  
A. Ortiz-Acevedo

We tested the hypothesis that oxytocin (Oxt) acts in the lumbar spinal cord to attenuate reflex pressor (mean arterial pressure, MAP) and heart rate (HR) responses to static hindlimb contraction (i.e., the exercise pressor reflex). Thus we compared MAP and HR responses to electrically stimulated hindlimb static contraction in the anesthetized cat before and after intrathecal injection of Oxt (30 pmol, n = 3; 300 pmol, n = 6; or 3 nmol, n = 6). The 300-pmol dose was most effective; it attenuated the pressor response to static contraction by 39 +/- 10% but had no effect on HR. In three other cats, contraction-induced increases in MAP and HR were monitored before and after intrathecal injection of 300 pmol of Oxt + 300 nmol of the selective Oxt receptor antagonist [d(CH2)5(1),O-Me-Tyr2,Thr4,Tyr9,Orn8]vasotocin. Pretreatment with the antagonist eliminated the effect of Oxt on MAP. In an additional 10 cats, increases in these same variables in response to static contraction were compared before and after intrathecal injection of the Oxt antagonist (30 nmol, n = 3 or 300 nmol, n = 7) into the lumbar spinal cord (L1-L7). Whereas 30 nmol of the Oxt antagonist had no effect, the 300-nmol dose augmented the contraction-induced pressor and HR responses by 28 +/- 7 and 32 +/- 17%, respectively. These data imply that endogenous Oxt modulates the exercise pressor reflex by its action on Oxt receptors in the lumbar spinal cord that can attenuate sensory nerve transmission from skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document