p2 receptors
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 31)

H-INDEX

48
(FIVE YEARS 3)

Abstract Podocyte calcium (Ca2+) signaling plays important roles in the (patho)physiology of the glomerular filtration barrier. Overactivation of podocyte transient receptor potential canonical (TRPC) channels including TRPC6 and purinergic signaling via P2 receptors that are known mechanosensors can increase podocyte intracellular Ca2+ levels ([Ca2+]i) and cause cell injury, proteinuria and glomerular disease including in diabetes. However, important mechanistic details of the trigger and activation of these pathways in vivo in the intact glomerular environment are lacking. Here we show direct visual evidence that podocytes can sense mechanical overload (increased glomerular capillary pressure) and metabolic alterations (increased plasma glucose) via TRPC6 and purinergic receptors including P2Y2. Multiphoton microscopy of podocyte [Ca2+]i was performed in vivo using wild-type and TRPC6 or P2Y2 knockout (KO) mice expressing the calcium reporter GCaMP3/5 only in podocytes and in vitro using freshly dissected microperfused glomeruli. Single-nephron intra-glomerular capillary pressure elevations induced by obstructing the efferent arteriole lumen with laser-induced microthrombus in vivo and by a micropipette in vitro triggered >2-fold increases in podocyte [Ca2+]i. These responses were blocked in TRPC6 and P2Y2 KO mice. Acute elevations of plasma glucose caused >4-fold increases in podocyte [Ca2+]i that were abolished by pharmacological inhibition of TRPC6 or P2 receptors using SAR7334 or suramin treatment, respectively. This study established the role of Ca2+ signaling via TRPC6 channels and P2 receptors in mechanical and metabolic sensing of podocytes in vivo, which are promising therapeutic targets in conditions with high intra-glomerular capillary pressure and plasma glucose, such as diabetic and hypertensive nephropathy.


Urologiia ◽  
2021 ◽  
Vol 5_2021 ◽  
pp. 10-14
Author(s):  
A.U. Ziganshin Ziganshin ◽  
D.V. Ivanova Ivanova ◽  
E.A. Zubkov Zubkov ◽  
M.E. Sitdykova Sitdykova ◽  

Author(s):  
Christa E. Müller ◽  
Vigneshwaran Namasivayam

AbstractThis review article presents a collection of tool compounds that selectively block and are recommended for studying P2Y and P2X receptor subtypes, investigating their roles in physiology and validating them as future drug targets. Moreover, drug candidates and approved drugs for P2 receptors will be discussed.


2021 ◽  
Vol 22 (15) ◽  
pp. 8078
Author(s):  
Julian Lommen ◽  
Julika Detken ◽  
Katharina Harr ◽  
Charlotte von von Gall ◽  
Amira A. H. Ali

ATP and other nucleotides are important glio-/neurotransmitters in the central nervous system. They bind to purinergic P2X and P2Y receptors that are ubiquitously expressed in various brain regions modulating various physiological and pathophysiological processes. P2X receptors are ligand-gated ion channels mediating excitatory postsynaptic responses whereas P2Y receptors are G protein-coupled receptors mediating slow synaptic transmission. A variety of P2X and P2Y subtypes with distinct neuroanatomical localization provide the basis for a high diversity in their function. There is increasing evidence that P2 receptor signaling plays a prominent role in learning and memory and thus, in hippocampal neuronal plasticity. Learning and memory are time-of-day-dependent. Moreover, extracellular ATP shows a diurnal rhythm in rodents. However, it is not known whether P2 receptors have a temporal variation in the hippocampus. This study provides a detailed systematic analysis on spatial and temporal distribution of P2 in the mouse hippocampus. We found distinct spatial and temporal distribution patterns of the P2 receptors in different hippocampal layers. The temporal distribution of P2 receptors can be segregated into two large time domains, the early to mid-day and the mid to late night. This study provides an important basis for understanding dynamic P2 purinergic signaling in the hippocampal glia/neuronal network.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Li ◽  
Juejun Liu ◽  
Amin Xu ◽  
Peter Heiduschka ◽  
Nicole Eter ◽  
...  

AbstractTo investigate the effect of P2 receptor on microglia and its inhibitor PPADS on choroidal neovascularization. Forty CX3CR1GFP/+ mice were randomly divided into 8 groups. In addition to the normal group, the rest of groups were receiving laser treatment. The retina and choroid from the second, third, fourth and fifth group of mice were taken in the 1, 4, 7, 14 days after laser treatment. The mice in the sixth and seventh group received intravitreal injection of 2 µl PPADS or PBS respectively immediately after laser treatment. The mice in the eighth group received topical application of PPADS once per day of three days. The mice in sixth, seventh and eighth group received AF and FFA examination on the fourth day after laser treatment. Immunofluorescence histochemical staining and real-time quantitative PCR were used to evaluate P2 expression and its effect on choroidal neovascularization. After laser treatment, activated microglia can express P2 receptors (P2X4, P2X7, P2Y2 and P2Y12). The expression of P2 increased on the first day after laser damage, peaked on the fourth day (tP2X4 = 6.05, tP2X7 = 2.95, tP2Y2 = 3.67, tP2Y12 = 5.98, all P < 0.01), and then decreased. After PPADS inhibition, compared with the PBS injection group, the mRNA of P2X4, P2X7, P2Y2 and P2Y12 were decreased significantly in the PPADS injection group (tP2X4 = 5.54, tP2X7 = 9.82, tP2Y2 = 3.86, tP2Y12 = 7.91, all P < 0.01) and the PPADS topical application group (tP2X4 = 3.24, tP2X7 = 5.89, tP2Y2 = 6.75, tP2Y12 = 4.97, all P < 0.01). Compared with the PBS injection group, not only the activity of microglia cells but also the leakage of CNV decreased significantly (P < 0.01) in the PPADS injection group and the PPADS topical application group. But between two PPADS groups, the leakage of CNV had no difference (P = 0.864). After laser induced CNV, activated microglia can express P2 receptors. The P2 receptor inhibitor, PPADS, can significantly affect the function of microglia and inhibit the formation of choroidal neovascularization.


2021 ◽  
Vol 9 (11) ◽  
Author(s):  
Kamil Dąbkowski ◽  
Ewelina Kreft ◽  
Kornelia Sałaga‐Zaleska ◽  
Gabriela Chyła ◽  
Agnieszka Kuchta ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Qihang Kong ◽  
Yue Quan ◽  
Geer Tian ◽  
Junteng Zhou ◽  
Xiaojing Liu

Mechanosensing and mechanotransduction are vital processes in mechanobiology and play critical roles in regulating cellular behavior and fate. There is increasing evidence that purinergic P2 receptors, members of the purinergic family, play a crucial role in cellular mechanotransduction. Thus, information on the specific mechanism of P2 receptor-mediated mechanotransduction would be valuable. In this review, we focus on purinergic P2 receptor signaling pathways and describe in detail the interaction of P2 receptors with other mechanosensitive molecules, including transient receptor potential channels, integrins, caveolae-associated proteins and hemichannels. In addition, we review the activation of purinergic P2 receptors and the role of various P2 receptors in the regulation of various pathophysiological processes induced by mechanical stimuli.


Sign in / Sign up

Export Citation Format

Share Document