scholarly journals P2X2/3 and P2X3 receptors contribute to the metaboreceptor component of the exercise pressor reflex

2010 ◽  
Vol 109 (5) ◽  
pp. 1416-1423 ◽  
Author(s):  
Jennifer L. McCord ◽  
Hirotsugu Tsuchimochi ◽  
Marc P. Kaufman

The exercise pressor reflex is due to activation of thin fiber afferents within contracting muscle. These afferents are in part stimulated by ATP activation of purinergic 2X (P2X) receptors during contraction. Which of the P2X receptors contribute to the reflex is unknown; however, P2X2/3 and P2X3 receptor subtypes are good candidates because they are located on thin fiber afferents and are involved in sensory neurotransmission. To determine if P2X2/3 and P2X3 receptors evoke the metabolic component of the exercise pressor reflex, we examined the effect of two P2X2/3 and P2X3 antagonists, A-317491 (10 mg/kg) and RO-3 (10 mg/kg), on the pressor response to injections of α,β-methylene ATP (α,β-MeATP; 50 μg/kg), freely perfused static contraction, contraction of the triceps surae muscles while the circulation was occluded, and postcontraction circulatory occlusion in decerebrate cats. We found that the antagonists reduced the pressor response to α,β-MeATP injection (before Δ 20 ± 3 mmHg; drug Δ 11 ± 3 mmHg; P < 0.05), suggesting the antagonists were effective in blocking P2X2/3 and P2X3 receptors. P2X2/3 and P2X3 receptor blockade reduced the pressor response to freely perfused contraction (before Δ 33 ± 5 mmHg; drug Δ 15 ± 5 mmHg; P < 0.05), contraction with the circulation occluded (before Δ 52 ± 7 mmHg; drug Δ 20 ± 4 mmHg; P < 0.05), and during postcontraction circulatory occlusion (before Δ 15 ± 1 mmHg; drug Δ 5 ± 1 mmHg; P < 0.05). Our findings suggest that P2X2/3 and P2X3 receptors contribute to the metabolic component of the exercise pressor reflex in decerebrate cats.

2020 ◽  
Vol 319 (2) ◽  
pp. R223-R232
Author(s):  
Juan A. Estrada ◽  
Guillaume P. Ducrocq ◽  
Joyce S. Kim ◽  
Marc P. Kaufman

Purinergic 2X (P2X) receptors on the endings of group III and IV afferents play a role in evoking the exercise pressor reflex. Particular attention has been paid to P2X3 receptors because their blockade in the periphery attenuated this reflex. In contrast, nothing is known about the role played by P2X receptors in the spinal cord in evoking the exercise pressor reflex in rats. P2X7 receptors, in particular, may be especially important in this regard because they are found in abundance on spinal glial cells and may communicate with neurons to effect reflexes controlling cardiovascular function. Consequently, we investigated the role played by spinal P2X7 receptors in evoking the exercise pressor reflex in decerebrated rats. We found that intrathecal injection of the P2X7 antagonist brilliant blue G (BBG) attenuated the exercise pressor reflex (blood pressure index: 294 ± 112 mmHg·s before vs. 7 ± 32 mmHg·s after; P < 0.05). Likewise, intrathecal injection of minocycline, which inhibits microglial cell output, attenuated the reflex. In contrast, intrathecal injection of BBG did not attenuate the pressor response evoked by intracarotid injection of sodium cyanide, a maneuver that stimulated carotid chemoreceptors. Moreover, injections of BBG either into the arterial supply of the contracting hindlimb muscles or into the jugular vein did not attenuate the exercise pressor reflex. Our findings support the hypothesis that P2X7 receptors on microglial cells within the spinal cord play a role in evoking the exercise pressor reflex.


2020 ◽  
Vol 318 (1) ◽  
pp. H78-H89 ◽  
Author(s):  
Guillaume P. Ducrocq ◽  
Joyce S. Kim ◽  
Juan A. Estrada ◽  
Marc P. Kaufman

The role of the acid-sensing ion channel 1a (ASIC1a) in evoking the exercise pressor reflex is unknown, despite the fact that ASIC1a is opened by decreases in pH in the physiological range. This fact prompted us to test the hypothesis that ASIC1a plays an important role in evoking the exercise pressor reflex in decerebrated rats with freely perfused hindlimb muscles. To test this hypothesis, we measured the effect of injecting two ASIC1a blockers into the arterial supply of the triceps surae muscles on the reflex pressor responses to four maneuvers, namely 1) static contraction of the triceps surae muscles (i.e., the exercise pressor reflex), 2) calcaneal tendon stretch, 3) intra-arterial injection of lactic acid, and 4) intra-arterial injection of diprotonated phosphate. We found that the 2 ASIC1a blockers, psalmotoxin-1 (200 ng/kg) and mambalgin-1 (6.5 μg/kg), decreased the pressor responses to static contraction as well as the peak pressor responses to injection of lactic acid and diprotonated phosphate. In contrast, neither ASIC1a blocker had any effect on the pressor responses to tendon stretch. Importantly, we found that ASIC1a blockade significantly decreased the pressor response to static contraction after a latency of at least 8 s. Our results support the hypothesis that ASIC1a plays a key role in evoking the metabolic component of the exercise pressor reflex. NEW & NOTEWORTHY The role played by acid-sensing ion channel 1a (ASIC1a) in evoking the exercise pressor reflex remains unknown. In decerebrated rats with freely perfused femoral arteries, blocking ASIC1a with psalmotoxin-1 or mambalgin-1 significantly attenuated the pressor response to static contraction, lactic acid, and diprotonated phosphate injection but had no effect on the pressor response to stretch. We conclude that ASIC1a plays a key role in evoking the exercise pressor reflex by responding to contraction-induced metabolites, such as protons.


2003 ◽  
Vol 94 (4) ◽  
pp. 1431-1436 ◽  
Author(s):  
Petra M. Schmitt ◽  
Marc P. Kaufman

Previously, intravenous injection of 17β-estradiol in decerebrate male cats was found to attenuate central command but not the exercise pressor reflex. This latter finding was surprising because the dorsal horn, the spinal site receiving synaptic input from thin-fiber muscle afferents, is known to contain estrogen receptors. We were prompted, therefore, to reexamine this issue. Instead of injecting 17β-estradiol intravenously, we applied it topically to the L7 and S1 spinal cord of male decerebrate cats. We found that topical application (150–200 μl) of 17β-estradiol in concentrations of 0.01, 0.1, and 1 μg/ml had no effect on the exercise pressor reflex, whereas a concentration of 10 μg/ml attenuated the reflex. We conclude that, in male cats, estrogen can only attenuate the exercise pressor reflex in concentrations that exceed the physiological level.


2001 ◽  
Vol 280 (5) ◽  
pp. H2153-H2161 ◽  
Author(s):  
Shawn G. Hayes ◽  
Marc P. Kaufman

The exercise pressor reflex, which arises from the contraction-induced stimulation of group III and IV muscle afferents, is widely believed to be evoked by metabolic stimuli signaling a mismatch between blood/oxygen demand and supply in the working muscles. Nevertheless, mechanical stimuli may also play a role in evoking the exercise pressor reflex. To determine this role, we examined the effect of gadolinium, which blocks mechanosensitive channels, on the exercise pressor reflex in both decerebrate and α-chloralose-anesthetized cats. We found that gadolinium (10 mM; 1 ml) injected into the femoral artery significantly attenuated the reflex pressor responses to static contraction of the triceps surae muscles and to stretch of the calcaneal (Achilles) tendon. In contrast, gadolinium had no effect on the reflex pressor response to femoral arterial injection of capsaicin (5 μg). In addition, gadolinium significantly attenuated the responses of group III muscle afferents, many of which are mechanically sensitive, to both static contraction and to tendon stretch. Gadolinium, however, had no effect on the responses of group IV muscle afferents, many of which are metabolically sensitive, to either static contraction or to capsaicin injection. We conclude that mechanical stimuli arising in contracting skeletal muscles contribute to the elicitation of the exercise pressor reflex.


2008 ◽  
Vol 295 (5) ◽  
pp. H2043-H2045 ◽  
Author(s):  
Jennifer L. McCord ◽  
Shawn G. Hayes ◽  
Marc P. Kaufman

Pyridoxal-phosphate-6-azophenyl-2′-4-disulfonate (PPADS), a purinergic 2 (P2) receptor antagonist, has been shown to attenuate the exercise pressor reflex in cats. In vitro, however, PPADS has been shown to block the production of prostaglandins, some of which play a role in evoking the exercise pressor reflex. Thus the possibility exists that PPADS blocks the exercise pressor reflex through a reduction in prostaglandin synthesis rather than through the blockade of P2 receptors. Using microdialysis, we collected interstitial fluid from skeletal muscle to determine prostaglandin E2 (PGE2) concentrations during the intermittent contraction of the triceps surae muscle before and after a popliteal arterial injection of PPADS (10 mg/kg). We found that the PGE2 concentration increased in response to the intermittent contraction before and after the injection of PPADS (both, P < 0.05). PPADS reduced the pressor response to exercise ( P < 0.05) but had no effect on the magnitude of PGE2 production during contraction ( P = 0.48). These experiments demonstrate that PPADS does not block the exercise pressor reflex through a reduction in PGE2 synthesis. We suggest that PGE2 and P2 receptors play independent roles in stimulating the exercise pressor reflex.


2002 ◽  
Vol 283 (3) ◽  
pp. H1012-H1018 ◽  
Author(s):  
Jianhua Li ◽  
Jere H. Mitchell

Static contraction of hindlimb skeletal muscle in cats induces a reflex pressor response. The superficial dorsal horn of the spinal cord is the major site of the first synapse of this reflex. In this study, static contraction of the triceps surae muscle was evoked by electrical stimulation of the tibial nerve for 2 min in anesthetized cats (stimulus parameters: two times motor threshold at 30 Hz, 0.025-ms duration). Ten stimulations were performed and 1-min rest was allowed between stimulations. Muscle contraction caused a maximal increase of 32 ± 5 mmHg in mean arterial pressure (MAP), which was obtained from the first three contractions. Activated neurons in the superficial dorsal horn were identified by c-Fos protein. Distinct c-Fos expression was present in the L6-S1 level of the superficial dorsal horn ipsilateral to the contracting leg (88 ± 14 labeled cells per section at L7), whereas only scattered c-Fos expression was observed in the contralateral superficial dorsal horn (9 ± 2 labeled cells per section, P < 0.05 compared with ipsilateral section). A few c-Fos-labeled cells were found in control animals (12 ± 5 labeled cells per section, P < 0.05 compared with stimulated cats). Furthermore, double-labeling methods demonstrated that c-Fos protein coexisted with nitric oxide (NO) synthase (NOS) positive staining in the superficial dorsal horn. Finally, an intrathecal injection of an inhibitor of NOS, N-nitro-l-arginine methyl ester (5 mM), resulted in fewer c-Fos-labeled cells (58 ± 12 labeled cells per section) and a reduced maximal MAP response (20 ± 3 mmHg, P < 0.05). These results suggest that the exercise pressor reflex induced by static contraction is mediated by activation of neurons in the superficial dorsal horn and that formation of NO in this region is involved in modulating the activated neurons and the pressor response to contraction.


2002 ◽  
Vol 92 (4) ◽  
pp. 1628-1634 ◽  
Author(s):  
Shawn G. Hayes ◽  
Marc P. Kaufman

Although mesencephalic locomotor region (MLR) stimulation and the exercise pressor reflex have been shown to increase whole nerve renal sympathetic activity, it is not known whether these mechanisms converge onto the same population of renal sympathetic postganglionic efferents. In decerebrate cats, we examined the responses of single renal sympathetic postganglionic efferents to stimulation of the MLR and the exercise pressor reflex (i.e., static contraction of the triceps surae muscles). We found that, in most instances (24 of 28 fibers), either MLR stimulation or the muscle reflex, but not both, increased the discharge of renal postganglionic sympathetic efferents. In addition, we found that renal sympathetic efferents that responded to static contraction while the muscles were freely perfused responded more vigorously to static contraction during circulatory arrest. Moreover, stretch of the calcaneal (Achilles) tendon stimulated the same renal sympathetic efferents as did static contraction. These findings suggest that MLR stimulation and the exercise pressor reflex do not converge onto the same renal sympathetic postganglionic efferents.


2003 ◽  
Vol 94 (4) ◽  
pp. 1437-1445 ◽  
Author(s):  
Ramy L. Hanna ◽  
Marc P. Kaufman

The exercise pressor reflex is believed to be evoked, in part, by multiple metabolic stimuli that are generated when blood supply to exercising muscles is inadequate to meet metabolic demand. Recently, ATP, which is a P2 receptor agonist, has been suggested to be one of the metabolic stimuli evoking this reflex. We therefore tested the hypothesis that blockade of P2 receptors within contracting skeletal muscle attenuated the exercise pressor reflex in decerebrate cats. We found that popliteal arterial injection of pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS; 10 mg/kg), a P2 receptor antagonist, attenuated the pressor response to static contraction of the triceps surae muscles. Specifically, the pressor response to contraction before PPADS averaged 36 ± 3 mmHg, whereas afterward it averaged 14 ± 3 mmHg ( P < 0.001; n = 19). In addition, PPADS attenuated the pressor response to postcontraction circulatory occlusion ( P < 0.01; n = 11). In contrast, popliteal arterial injection of CGS-15943 (250 μg/kg), a P1 receptor antagonist, had no effect on the pressor response to static contraction of the triceps surae muscles. In addition, popliteal arterial injection of PPADS but not CGS-15943 attenuated the pressor response to stretch of the calcaneal (Achilles) tendon. We conclude that P2 receptors on the endings of thin fiber muscle afferents play a role in evoking both the metabolic and mechanoreceptor components of the exercise pressor reflex.


2015 ◽  
Vol 309 (10) ◽  
pp. R1301-R1308 ◽  
Author(s):  
Audrey J. Stone ◽  
Steven W. Copp ◽  
Marc P. Kaufman

Voltage-gated sodium channels (NaV) 1.7 are highly expressed on the axons of somatic afferent neurons and are thought to play an important role in the signaling of inflammatory pain. NaV 1.7 channels are classified as tetrodotoxin (TTX)-sensitive, meaning that they are blocked by TTX concentrations of less than 300 nM. These findings prompted us to determine in decerebrated, unanesthetized rats, the role played by NaV 1.7 channels in the transmission of muscle afferent input evoking the exercise pressor reflex. We first showed that the exercise pressor reflex, which was evoked by static contraction of the triceps surae muscles, was reversibly attenuated by application of 50 nM TTX, but not 5 nM TTX, to the L4-L5 dorsal roots (control: 21 ± 1 mmHg, TTX: 8 ± 2 mmHg, recovery: 21 ± 3 mmHg; n = 6; P < 0.01). We next found that the peak pressor responses to contraction were significantly attenuated by dorsal root application of 100 nM Ssm6a, a compound that is a selective NaV 1.7 channel inhibitor. Removal of Ssm6a restored the reflex to its control level (control: 19 ± 3 mmHg, Ssm6a: 10 ± 1 mmHg, recovery: 19 ± 4 mmHg; n = 6; P < 0.05). Compound action potentials recorded from the L4 and L5 dorsal roots and evoked by single-pulse stimulation of the sciatic nerve showed that both TTX and Ssm6a attenuated input from group III, as well as group IV afferents. We conclude that NaV 1.7 channels play a role in the thin-fiber muscle afferent pathway evoking the exercise pressor reflex.


2007 ◽  
Vol 292 (2) ◽  
pp. H866-H873 ◽  
Author(s):  
Jong Kyung Kim ◽  
Shawn G. Hayes ◽  
Angela E. Kindig ◽  
Marc P. Kaufman

The renal vasoconstriction induced by the sympathetic outflow during exercise serves to direct blood flow from the kidney toward the exercising muscles. The renal circulation seems to be particularly important in this regard, because it receives a substantial part of the cardiac output, which in resting humans has been estimated to be 20%. The role of group III mechanoreceptors in causing the reflex renal sympathetic response to static contraction remains an open question. To shed some light on this question, we recorded the renal sympathetic nerve responses to static contraction before and after injection of gadolinium into the arterial supply of the statically contracting triceps surae muscles of decerebrate unanesthetized and chloralose-anesthetized cats. Gadolinium has been shown to be a selective blocker of mechanogated channels in thin-fiber muscle afferents, which comprise the afferent arm of the exercise pressor reflex arc. In decerebrate ( n = 15) and chloralose-anesthetized ( n = 12) cats, we found that gadolinium (10 mM; 1 ml) significantly attenuated the renal sympathetic nerve and pressor responses to static contraction (60 s) after a latent period of 60 min; both responses recovered after a latent period of 120 min. We conclude that thin-fiber mechanoreceptors supplying contracting muscle are involved in some of the renal vasoconstriction evoked by the exercise pressor reflex.


Sign in / Sign up

Export Citation Format

Share Document