scholarly journals Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension

2008 ◽  
Vol 295 (4) ◽  
pp. H1522-H1528 ◽  
Author(s):  
Adam G. Goodwill ◽  
Milinda E. James ◽  
Jefferson C. Frisbee

This study determined if altered vascular prostacyclin (PGI2) and/or thromboxane A2 (TxA2) production with reduced Po2 contributes to impaired hypoxic dilation of skeletal muscle resistance arterioles of obese Zucker rats (OZRs) versus lean Zucker rats (LZRs). Mechanical responses were assessed in isolated gracilis muscle arterioles following reductions in Po2 under control conditions and following pharmacological interventions inhibiting arachidonic acid metabolism and nitric oxide synthase and alleviating elevated vascular oxidant stress. The production of arachidonic acid metabolites was assessed using pooled arteries from OZRs and LZRs in response to reduced Po2. Hypoxic dilation, endothelium-dependent in both strains, was attenuated in OZRs versus LZRs. Nitric oxide synthase inhibition had no significant impact on hypoxic dilation in either strain. Cyclooxygenase inhibition dramatically reduced hypoxic dilation in LZRs and abolished responses in OZRs. Treatment of arterioles from OZRs with polyethylene glycol-superoxide dismutase improved hypoxic dilation, and this improvement was entirely cyclooxygenase dependent. Vascular PGI2 production with reduced Po2 was similar between strains, although TxA2 production was increased in OZRs, a difference that was attenuated by treatment of vessels from OZRs with polyethylene glycol-superoxide dismutase. Both blockade of PGH2/TxA2 receptors and inhibition of thromboxane synthase increased hypoxic dilation in OZR arterioles. These results suggest that a contributing mechanism underlying impaired hypoxic dilation of skeletal muscle arterioles of OZRs may be an increased vascular production of TxA2, which competes against the vasodilator influences of PGI2. These results also suggest that the elevated vascular oxidant stress inherent in metabolic syndrome may contribute to the increased vascular TxA2 production and may blunt vascular sensitivity to PGI2.

2002 ◽  
Vol 283 (6) ◽  
pp. H2160-H2168 ◽  
Author(s):  
Jefferson C. Frisbee ◽  
Kristopher G. Maier ◽  
David W. Stepp

This study characterized myogenic activation of skeletal muscle (gracilis) resistance arteries from lean (LZR) and obese Zucker rats (OZR). Arteries from OZR exhibited increased myogenic activation versus LZR; this increase was impaired by endothelium denudation or nitric oxde synthase inhibition. Treatment of vessels with 17-octadecynoic acid impaired responses in both strains by comparable amounts. Dihydroethidine microfluorography indicated elevated vascular superoxide levels in OZR versus LZR; immunohistochemistry demonstrated elevated vascular nitrotyrosine levels in OZR, indicating increased peroxynitrite presence. Vessel treatment with oxidative radical scavengers (polythylene glycol-superoxide dismutase/catalase) or inhibition of Ca2+-activated K+(KCa) channels (iberiotoxin) did not alter myogenic activation in LZR but normalized activation in OZR. Application of peroxynitrite to vessels of OZR caused a greater vasoconstriction versus LZR; the response was impaired in OZR by elevated intraluminal pressure and was abolished in both strains by iberiotoxin. These results suggest that enhanced myogenic activation of gracilis arteries of OZR versus LZR 1) is not due to alterations in cytochrome P-450 contribution, and 2) may be due to elevated peroxynitrite levels inhibiting KCa channels following increased intraluminal pressure.


1993 ◽  
Vol 230 (1) ◽  
pp. 125-128 ◽  
Author(s):  
Francesco Squadrito ◽  
Gioacchino Calapai ◽  
Domenico Cucinotta ◽  
Domenica Altavilla ◽  
Basilia Zingarelli ◽  
...  

1996 ◽  
Vol 209 (2) ◽  
pp. 137-139 ◽  
Author(s):  
John E. Morley ◽  
Michael B. Mattammal

2001 ◽  
Vol 281 (4) ◽  
pp. H1568-H1574 ◽  
Author(s):  
Jefferson C. Frisbee

This study determined alterations to hypoxic dilation of isolated skeletal muscle resistance arteries (gracilis arteries; viewed via television microscopy) from obese Zucker rats (OZR) compared with lean Zucker rats (LZR). Hypoxic dilation was reduced in OZR compared with LZR. Endothelium removal and cyclooxygenase inhibition (indomethacin) severely reduced this response in both groups, although nitric oxide synthase inhibition ( N ω-nitro-l-arginine methyl ester) reduced dilation in LZR only. Treatment of vessels with a PGH2-thromboxane A2 receptor antagonist had no effect on hypoxic dilation in either group. Arterial dilation to arachidonic acid, iloprost, acetylcholine, and sodium nitroprusside was reduced in OZR versus LZR, although dilation to forskolin and aprikalim was unaltered. Treatment of arteries from OZR with oxidative radical scavengers increased dilation to hypoxia and agonists, with no effect on responses in LZR. The restored hypoxic dilation in OZR was abolished by indomethacin. These results suggest that hypoxic dilation of skeletal muscle microvessels from LZR represents the summated effects of prostanoid and nitric oxide release, whereas the impaired response of vessels in OZR may reflect scavenging of PGI2 by superoxide anion.


2007 ◽  
Vol 4 (3) ◽  
pp. 214-229 ◽  
Author(s):  
Shahla Riazi ◽  
Veerendra K. Madala-Halagappa ◽  
Ana Paula Dantas ◽  
Xinqun Hu ◽  
Carolyn A. Ecelbarger

Diabetes ◽  
1997 ◽  
Vol 46 (11) ◽  
pp. 1691-1700 ◽  
Author(s):  
S. Kapur ◽  
S. Bedard ◽  
B. Marcotte ◽  
C. H. Cote ◽  
A. Marette

Sign in / Sign up

Export Citation Format

Share Document