Sex Differences in Renal Nitric Oxide Synthase, NAD(P)H Oxidase, and Blood Pressure in Obese Zucker Rats

2007 ◽  
Vol 4 (3) ◽  
pp. 214-229 ◽  
Author(s):  
Shahla Riazi ◽  
Veerendra K. Madala-Halagappa ◽  
Ana Paula Dantas ◽  
Xinqun Hu ◽  
Carolyn A. Ecelbarger
2008 ◽  
Vol 295 (4) ◽  
pp. H1522-H1528 ◽  
Author(s):  
Adam G. Goodwill ◽  
Milinda E. James ◽  
Jefferson C. Frisbee

This study determined if altered vascular prostacyclin (PGI2) and/or thromboxane A2 (TxA2) production with reduced Po2 contributes to impaired hypoxic dilation of skeletal muscle resistance arterioles of obese Zucker rats (OZRs) versus lean Zucker rats (LZRs). Mechanical responses were assessed in isolated gracilis muscle arterioles following reductions in Po2 under control conditions and following pharmacological interventions inhibiting arachidonic acid metabolism and nitric oxide synthase and alleviating elevated vascular oxidant stress. The production of arachidonic acid metabolites was assessed using pooled arteries from OZRs and LZRs in response to reduced Po2. Hypoxic dilation, endothelium-dependent in both strains, was attenuated in OZRs versus LZRs. Nitric oxide synthase inhibition had no significant impact on hypoxic dilation in either strain. Cyclooxygenase inhibition dramatically reduced hypoxic dilation in LZRs and abolished responses in OZRs. Treatment of arterioles from OZRs with polyethylene glycol-superoxide dismutase improved hypoxic dilation, and this improvement was entirely cyclooxygenase dependent. Vascular PGI2 production with reduced Po2 was similar between strains, although TxA2 production was increased in OZRs, a difference that was attenuated by treatment of vessels from OZRs with polyethylene glycol-superoxide dismutase. Both blockade of PGH2/TxA2 receptors and inhibition of thromboxane synthase increased hypoxic dilation in OZR arterioles. These results suggest that a contributing mechanism underlying impaired hypoxic dilation of skeletal muscle arterioles of OZRs may be an increased vascular production of TxA2, which competes against the vasodilator influences of PGI2. These results also suggest that the elevated vascular oxidant stress inherent in metabolic syndrome may contribute to the increased vascular TxA2 production and may blunt vascular sensitivity to PGI2.


1993 ◽  
Vol 230 (1) ◽  
pp. 125-128 ◽  
Author(s):  
Francesco Squadrito ◽  
Gioacchino Calapai ◽  
Domenico Cucinotta ◽  
Domenica Altavilla ◽  
Basilia Zingarelli ◽  
...  

1996 ◽  
Vol 209 (2) ◽  
pp. 137-139 ◽  
Author(s):  
John E. Morley ◽  
Michael B. Mattammal

1995 ◽  
Vol 269 (1) ◽  
pp. F134-F139 ◽  
Author(s):  
W. H. Beierwaltes

The macula densa is a regulatory site for renin. It contains exclusively the neuronal isoform of nitric oxide synthase (NOS), suggesting NO could stimulate renin secretion through the macula densa pathway. To test whether neuronal NOS mediates renin secretion, renin was stimulated by either the renal baroreceptor or the diuretic furosemide (acting through the macula densa pathway). Renin secretion rate (RSR) was measured in 12 Inactin-anesthetized rats at normal (104 +/- 3 mmHg) and reduced renal perfusion pressure (65 +/- 1 mmHg), before and after selective blockade of the neuronal NOS with 7-nitroindazole (7-NI, 50 mg/kg ip). 7-NI had no effect on basal blood pressure (102 +/- 2 mmHg) or renal blood flow (RBF). Decreasing renal perfusion pressure doubled RSR from 11.8 +/- 3.3 to 22.9 +/- 5.7 ng ANG I.h-1.min-1 (P < 0.01) (ANG I is angiotensin I). Similarly, in 7-NI-treated rats, reduced perfusion doubled RSR from 8.5 +/- 1.8 to 20.5 +/- 6.2 ng ANG I.h-1.min-1 (P < 0.01). Renal hemodynamics and RSR were measured in response to 5 mg/kg iv furosemide in 12 control rats and 11 rats treated with 7-NI. Blocking neuronal NOS did not alter blood pressure (102 +/- 2 mmHg), RBF (5.8 +/- 0.4 ml.min-1.g kidney wt-1), or renal vascular resistance (18.7 +/- 1.4 mmHg.ml-1.min.g kidney wt).(ABSTRACT TRUNCATED AT 250 WORDS)


2015 ◽  
Vol 37 (8) ◽  
pp. 633-642 ◽  
Author(s):  
Filiz Basralı ◽  
Günnur Koçer ◽  
Pınar Ülker Karadamar ◽  
Seher Nasırcılar Ülker ◽  
Leyla Satı ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document