Dynamic and static baroreflex control of muscle sympathetic nerve activity (SNA) parallels that of renal and cardiac SNA during physiological change in pressure

2005 ◽  
Vol 289 (6) ◽  
pp. H2641-H2648 ◽  
Author(s):  
Atsunori Kamiya ◽  
Toru Kawada ◽  
Kenta Yamamoto ◽  
Daisaku Michikami ◽  
Hideto Ariumi ◽  
...  

Despite accumulated knowledge on human baroreflex control of muscle sympathetic nerve activity (SNA), whether baroreflex control of muscle SNA parallels that of other SNAs, in particular renal and cardiac SNAs, remains unclear. Using urethane and α-chloralose-anesthetized, vagotomized and aortic-denervated rabbits ( n = 10), we recorded muscle SNA from tibial nerve by microneurography, simultaneously with renal and cardiac SNAs by wire electrode. To produce a baroreflex open-loop condition, we isolated the carotid sinuses from systemic circulation and altered the intracarotid sinus pressure (CSP) according to a binary white noise sequence of operating pressure ± 20 mmHg (for investigating dynamic characteristics of baroreflex) or in stepwise 20-mmHg increments from 40 to 160 mmHg (for investigating static characteristics of baroreflex). Dynamic high-pass characteristics of baroreflex control of muscle SNA, assessed by the increasing slope of transfer gain, showed that more rapid change of arterial pressure resulted in greater response of muscle SNA to pressure change and that these characteristics were similar to cardiac SNA but greater than renal SNA. However, numerical simulation based on the transfer function shows that the differences in dynamic baroreflex control at various organs result in detectable differences among SNAs only when CSP changes at unphysiologically high rates (i.e., 5 mmHg/s). On the other hand, static reverse-sigmoid characteristics of baroreflex control of muscle SNA agreed well with those of renal or cardiac SNAs. In conclusion, dynamic-linear and static-nonlinear baroreflex control of muscle SNA is similar to that of renal and cardiac SNAs under physiological pressure change.

2018 ◽  
Vol 103 (10) ◽  
pp. 1318-1325 ◽  
Author(s):  
Lauro C. Vianna ◽  
Igor A. Fernandes ◽  
Daniel G. Martinez ◽  
André L. Teixeira ◽  
Bruno M. Silva ◽  
...  

2006 ◽  
Vol 290 (4) ◽  
pp. H1419-H1426 ◽  
Author(s):  
Masashi Ichinose ◽  
Mitsuru Saito ◽  
Narihiko Kondo ◽  
Takeshi Nishiyasu

We investigated the time-dependent modulation of arterial baroreflex (ABR) control of muscle sympathetic nerve activity (MSNA) that occurs during isometric handgrip exercise (IHG). Thirteen healthy subjects performed a 3-min IHG at 30% maximal voluntary contraction, which was followed by a period of imposed postexercise muscle ischemia (PEMI). The ABR control of MSNA (burst incidence and strength and total activity) was evaluated by analyzing the relationship between spontaneous variations in diastolic arterial pressure (DAP) and MSNA during supine rest, at each minute of IHG, and during PEMI. We found that 1) the linear relations between DAP and MSNA variables were shifted progressively rightward until the third minute of IHG (IHG3); 2) 2 min into IHG (IHG2), the DAP-MSNA relations were shifted upward and were shifted further upward at IHG3; 3) the sensitivity of the ABR control of total MSNA was increased at IHG2 and increased further at IHG3; and 4) during PEMI, the ABR operating pressure was slightly higher than at IHG2, and the sensitivity of the control of total MSNA was the same as at IHG2. During PEMI, the DAP-burst strength and DAP-total MSNA relations were shifted downward from the IHG3 level to the IHG2 level, whereas the DAP-burst incidence relation remained at the IHG3 level. These results indicate that during IHG, ABR control of MSNA is modulated in a time-dependent manner. We suggest that this modulation of ABR function is one of the mechanisms underlying the progressive increase in blood pressure and MSNA during the course of isometric exercise.


2019 ◽  
Vol 317 (2) ◽  
pp. R280-R288 ◽  
Author(s):  
Jian Cui ◽  
Rachel C. Drew ◽  
Matthew D. Muller ◽  
Cheryl Blaha ◽  
Virginia Gonzalez ◽  
...  

Smoking is a risk factor for cardiovascular diseases. Prior reports showed a transient increase in blood pressure (BP) following a spontaneous burst of muscle sympathetic nerve activity (MSNA). We hypothesized that this pressor response would be accentuated in smokers. Using signal-averaging techniques, we examined the BP (Finometer) response to MSNA in 18 otherwise healthy smokers and 42 healthy nonsmokers during resting conditions. The sensitivities of baroreflex control of MSNA and heart rate were also assessed. The mean resting MSNA, heart rate, and mean arterial pressure (MAP) were higher in smokers than nonsmokers. The MAP increase following a burst of MSNA was significantly greater in smokers than nonsmokers (Δ3.4 ± 0.3 vs. Δ1.6 ± 0.1 mmHg, P < 0.001). The baroreflex sensitivity (BRS) of burst incidence, burst area, or total activity was not different between the two groups. However, cardiac BRS was lower in smokers than nonsmokers (14.6 ± 1.7 vs. 24.6 ± 1.5 ms/mmHg, P < 0.001). Moreover, the MAP increase following a burst was negatively correlated with the cardiac BRS. These observations suggest that habitual smoking in otherwise healthy individuals raises the MAP increase following spontaneous MSNA and that the attenuated cardiac BRS in the smokers was a contributing factor. We speculate that the accentuated pressor increase in response to spontaneous MSNA may contribute to the elevated resting BP in the smokers.


2009 ◽  
Vol 106 (4) ◽  
pp. 1125-1131 ◽  
Author(s):  
Jian Cui ◽  
Manabu Shibasaki ◽  
Scott L. Davis ◽  
David A. Low ◽  
David M. Keller ◽  
...  

Both whole body heat stress and stimulation of muscle metabolic receptors activate muscle sympathetic nerve activity (MSNA) through nonbaroreflex pathways. In addition to stimulating muscle metaboreceptors, exercise has the potential to increase internal temperature. Although we and others report that passive whole body heating does not alter the gain of the arterial baroreflex, it is unknown whether increased body temperature, often accompanying exercise, affects baroreflex function when muscle metaboreceptors are stimulated. This project tested the hypothesis that whole body heating alters the gain of baroreflex control of muscle sympathetic nerve activity (MSNA) and heart rate during muscle metaboreceptor stimulation engaged via postexercise muscle ischemia (PEMI). MSNA, blood pressure (BP, Finometer), and heart rate were recorded from 11 healthy volunteers. The volunteers performed isometric handgrip exercise until fatigue, followed by 2.5 min of PEMI. During PEMI, BP was acutely reduced and then raised pharmacologically using the modified Oxford technique. This protocol was repeated two to three times when volunteers were normothermic, and again during heat stress (increase core temperature ∼ 0.7°C) conditions. The slope of the relationship between MSNA and BP during PEMI was less negative (i.e., decreased baroreflex gain) during whole body heating when compared with the normothermic condition (−4.34 ± 0.40 to −3.57 ± 0.31 units·beat−1·mmHg−1, respectively; P = 0.015). The gain of baroreflex control of heart rate during PEMI was also decreased during whole body heating ( P < 0.001). These findings indicate that whole body heat stress reduces baroreflex control of MSNA and heart rate during muscle metaboreceptor stimulation.


Sign in / Sign up

Export Citation Format

Share Document