scholarly journals Habitual cigarette smoking raises pressor responses to spontaneous bursts of muscle sympathetic nerve activity

2019 ◽  
Vol 317 (2) ◽  
pp. R280-R288 ◽  
Author(s):  
Jian Cui ◽  
Rachel C. Drew ◽  
Matthew D. Muller ◽  
Cheryl Blaha ◽  
Virginia Gonzalez ◽  
...  

Smoking is a risk factor for cardiovascular diseases. Prior reports showed a transient increase in blood pressure (BP) following a spontaneous burst of muscle sympathetic nerve activity (MSNA). We hypothesized that this pressor response would be accentuated in smokers. Using signal-averaging techniques, we examined the BP (Finometer) response to MSNA in 18 otherwise healthy smokers and 42 healthy nonsmokers during resting conditions. The sensitivities of baroreflex control of MSNA and heart rate were also assessed. The mean resting MSNA, heart rate, and mean arterial pressure (MAP) were higher in smokers than nonsmokers. The MAP increase following a burst of MSNA was significantly greater in smokers than nonsmokers (Δ3.4 ± 0.3 vs. Δ1.6 ± 0.1 mmHg, P < 0.001). The baroreflex sensitivity (BRS) of burst incidence, burst area, or total activity was not different between the two groups. However, cardiac BRS was lower in smokers than nonsmokers (14.6 ± 1.7 vs. 24.6 ± 1.5 ms/mmHg, P < 0.001). Moreover, the MAP increase following a burst was negatively correlated with the cardiac BRS. These observations suggest that habitual smoking in otherwise healthy individuals raises the MAP increase following spontaneous MSNA and that the attenuated cardiac BRS in the smokers was a contributing factor. We speculate that the accentuated pressor increase in response to spontaneous MSNA may contribute to the elevated resting BP in the smokers.

2009 ◽  
Vol 106 (4) ◽  
pp. 1125-1131 ◽  
Author(s):  
Jian Cui ◽  
Manabu Shibasaki ◽  
Scott L. Davis ◽  
David A. Low ◽  
David M. Keller ◽  
...  

Both whole body heat stress and stimulation of muscle metabolic receptors activate muscle sympathetic nerve activity (MSNA) through nonbaroreflex pathways. In addition to stimulating muscle metaboreceptors, exercise has the potential to increase internal temperature. Although we and others report that passive whole body heating does not alter the gain of the arterial baroreflex, it is unknown whether increased body temperature, often accompanying exercise, affects baroreflex function when muscle metaboreceptors are stimulated. This project tested the hypothesis that whole body heating alters the gain of baroreflex control of muscle sympathetic nerve activity (MSNA) and heart rate during muscle metaboreceptor stimulation engaged via postexercise muscle ischemia (PEMI). MSNA, blood pressure (BP, Finometer), and heart rate were recorded from 11 healthy volunteers. The volunteers performed isometric handgrip exercise until fatigue, followed by 2.5 min of PEMI. During PEMI, BP was acutely reduced and then raised pharmacologically using the modified Oxford technique. This protocol was repeated two to three times when volunteers were normothermic, and again during heat stress (increase core temperature ∼ 0.7°C) conditions. The slope of the relationship between MSNA and BP during PEMI was less negative (i.e., decreased baroreflex gain) during whole body heating when compared with the normothermic condition (−4.34 ± 0.40 to −3.57 ± 0.31 units·beat−1·mmHg−1, respectively; P = 0.015). The gain of baroreflex control of heart rate during PEMI was also decreased during whole body heating ( P < 0.001). These findings indicate that whole body heat stress reduces baroreflex control of MSNA and heart rate during muscle metaboreceptor stimulation.


1997 ◽  
Vol 83 (6) ◽  
pp. 2048-2054 ◽  
Author(s):  
Srinivas Katragadda ◽  
Ailiang Xie ◽  
Dominic Puleo ◽  
James B. Skatrud ◽  
Barbara J. Morgan

Katragadda, Srinivas, Ailiang Xie, Dominic Puleo, James B. Skatrud, and Barbara J. Morgan. Neural mechanism of the pressor response to obstructive and nonobstructive apnea. J. Appl. Physiol. 83(6): 2048–2054, 1997.—Obstructive and nonobstructive apneas elicit substantial increases in muscle sympathetic nerve activity and arterial pressure. The time course of change in these variables suggests a causal relationship; however, mechanical influences, such as release of negative intrathoracic pressure and reinflation of the lungs, are potential contributors to the arterial pressure rise. To test the hypothesis that apnea-induced pressor responses are neurally mediated, we measured arterial pressure (photoelectric plethysmography), muscle sympathetic nerve activity (peroneal microneurography), arterial O2 saturation (pulse oximeter), and end-tidal CO2 tension (gas analyzer) during sustained Mueller maneuvers, intermittent Mueller maneuvers, and simple breath holds in six healthy humans before, during, and after ganglionic blockade with trimethaphan (3–4 mg/min, titrated to produce complete disappearance of sympathetic bursts from the neurogram). Ganglionic blockade abolished the pressor responses to sustained and intermittent Mueller maneuvers (−4 ± 1 vs. +15 ± 3 and 0 ± 2 vs. +15 ± 5 mmHg) and breath holds (0 ± 3 vs. +11 ± 3, all P < 0.05). We conclude that the acute pressor response to obstructive and nonobstructive voluntary apnea is sympathetically mediated.


2000 ◽  
Vol 279 (2) ◽  
pp. H536-H541 ◽  
Author(s):  
Philippe Van de Borne ◽  
Silvia Mezzetti ◽  
Nicola Montano ◽  
Krzysztof Narkiewicz ◽  
Jean Paul Degaute ◽  
...  

Interactions between mechanisms governing ventilation and blood pressure (BP) are not well understood. We studied in 11 resting normal subjects the effects of sustained isocapnic hyperventilation on arterial baroreceptor sensitivity, determined as the α index between oscillations in systolic BP (SBP) generated by respiration and oscillations present in R-R intervals (RR) and in peripheral sympathetic nerve traffic [muscle sympathetic nerve activity (MSNA)]. Tidal volume increased from 478 ± 24 to 1,499 ± 84 ml and raised SBP from 118 ± 2 to 125 ± 3 mmHg, whereas RR decreased from 947 ± 18 to 855 ± 11 ms (all P < 0.0001); MSNA did not change. Hyperventilation reduced arterial baroreflex sensitivity to oscillations in SBP at both cardiac (from 13 ± 1 to 9 ± 1 ms/mmHg, P < 0.001) and MSNA levels (by −37 ± 5%, P < 0.0001). Thus increased BP during hyperventilation does not elicit any reduction in either heart rate or MSNA. Baroreflex modulation of RR and MSNA in response to hyperventilation-induced BP oscillations is attenuated. Blunted baroreflex gain during hyperventilation may be a mechanism that facilitates simultaneous increases in BP, heart rate, and sympathetic activity during dynamic exercise and chemoreceptor activation.


2002 ◽  
Vol 93 (3) ◽  
pp. 857-864 ◽  
Author(s):  
John R. Halliwill ◽  
Christopher T. Minson

We tested the hypothesis that acute hypoxia would alter the sensitivity of arterial baroreflex control of both heart rate and sympathetic vasoconstrictor outflow. In 16 healthy, nonsmoking, normotensive subjects (8 women, 8 men, age 20–33 yr), we assessed baroreflex control of heart rate and muscle sympathetic nerve activity by using the modified Oxford technique during both normoxia and hypoxia (12% O2). Compared with normoxia, hypoxia reduced arterial O2 saturation levels from 96.8 ± 0.3 to 80.7 ± 1.4% ( P < 0.001), increased heart rate from 59.8 ± 2.4 to 79.4 ± 2.9 beats/min ( P < 0.001), increased mean arterial pressure from 96.7 ± 2.5 to 105.0 ± 3.3 mmHg ( P = 0.002), and increased sympathetic activity 126 ± 58% ( P < 0.05). The sensitivity for baroreflex control of both heart rate and sympathetic activity was not altered by hypoxia (heart rate: −1.02 ± 0.09 vs. −1.02 ± 0.11 beats · min−1 · mmHg−1; nerve activity: −5.6 ± 0.9 vs. −6.2 ± 0.9 integrated activity · beat−1 · mmHg−1; both P > 0.05). Acute exposure to hypoxia reset baroreflex control of both heart rate and sympathetic activity to higher pressures without changes in baroreflex sensitivity.


2013 ◽  
Vol 305 (8) ◽  
pp. H1238-H1245 ◽  
Author(s):  
Christopher E. Schwartz ◽  
Elisabeth Lambert ◽  
Marvin S. Medow ◽  
Julian M. Stewart

Withdrawal of muscle sympathetic nerve activity (MSNA) may not be necessary for the precipitous fall of peripheral arterial resistance and arterial pressure (AP) during vasovagal syncope (VVS). We tested the hypothesis that the MSNA-AP baroreflex entrainment is disrupted before VVS regardless of MSNA withdrawal using the phase synchronization between blood pressure and MSNA during head-up tilt (HUT) to measure reflex coupling. We studied eight VVS subjects and eight healthy control subjects. Heart rate, AP, and MSNA were measured during supine baseline and at early, mid, late, and syncope stages of HUT. Phase synchronization indexes, measuring time-dependent differences between MSNA and AP phases, were computed. Directionality indexes, indicating the influence of AP on MSNA (neural arc) and MSNA on AP (peripheral arc), were computed. Heart rate was greater in VVS compared with control subjects during early, mid, and late stages of HUT and significantly declined at syncope ( P = 0.04). AP significantly decreased during mid, late, and syncope stages of tilt in VVS subjects only ( P = 0.001). MSNA was not significantly different between groups during HUT ( P = 0.700). However, the phase synchronization index significantly decreased during mid and late stages in VVS subjects but not in control subjects ( P < .001). In addition, the neural arc was significantly affected more than the peripheral arc before syncope. In conclusion, VVS is accompanied by a loss of the synchronous AP-MSNA relationship with or without a loss in MSNA at faint. This provides insight into the mechanisms behind the loss of vasoconstriction and drop in AP independent of MSNA at the time of vasovagal faint.


1989 ◽  
Vol 257 (3) ◽  
pp. H918-H926 ◽  
Author(s):  
M. M. Knuepfer ◽  
S. P. Han ◽  
A. J. Trapani ◽  
K. F. Fok ◽  
T. C. Westfall

Endothelin is a peptide with potent, long-lasting pressor effects characterized by increases in mesenteric and hindquarters vascular resistance and bradycardia following an initial, transient depressor response. This study examined the mechanisms of action of endothelin on regional hemodynamics in conscious, freely moving rats and on baroreflex sensitivity both in conscious and chloralose-anesthetized rats. The pressor response to endothelin (0.67 nmol/kg) was attenuated by nifedipine (25 micrograms/kg) and augmented by chloralose anesthesia. The bradycardia was attenuated by pentolinium (10 mg/kg), atropine methyl sulfate (0.5 mg/kg), or chloralose anesthesia. Hindquarter vaso-constriction was attenuated by nifedipine, pentolinium, and atropine, whereas mesenteric vasoconstriction was less sensitive to blockade. The vasopressin V1 antagonist, [d(CH2)5Tyr(Me)]-AVP (20 micrograms/kg), indomethacin (5 mg/kg), or verapamil (150 micrograms/kg) did not affect any of these cardiovascular responses. Renal sympathetic nerve activity was reduced similarly in chloralose-anesthetized rats to pressor responses elicited by either phenylephrine or endothelin, and the slope of the baro-reflex function curve after endothelin was similar to that of phenylephrine. These results suggest that endothelin is a potent vasoconstrictor in which its action on visceral and skeletal muscle vasculature is mediated by somewhat different mechanisms. Endothelin does not alter baroreceptor reflex control of sympathetic nerve activity or heart rate.


Sign in / Sign up

Export Citation Format

Share Document